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ABSTRACT
Smartwatches are operating under tight energy constraints. In
this paper, we describe our on-going work on measuring and
optimizing Android smartwatch energy consumption. We derived
power models for commodity smartwatches, and then applied
the power model to an IRB-approved user study involving 30
smartwatch users. We then propose research ideas on improving
energy efficiencies for Android smartwatches.
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•Human-centered computing → Ubiquitous and mobile
devices;
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1. INTRODUCTION
As one of the most popular types of wearable computers,

smartwatch brings a wide range of features such as receiving
notifications and voice control conveniently to our wrists. However,
a smartwatch operates under tight energy constraints. It usually
has a battery of only 300 to 500 mAh, much smaller than that of a
typical smartphone battery (2–3K mAh) [9]. Also charging a watch
requires special charging dock making it difficult for most users
to charge the watches during the day. Based on our experience of
using commodity smartwatches such as LG Urbane, a fully charged
watch often cannot last for a full day. Despite being a great concern
about smartwatch, the energy efficiency receives little attention
from the research community. Also it is difficult to directly
apply existing energy optimizing techniques for smartphones to
smartwatches due to many inherent differences between a phone
and a watch.

In this extended abstract, we report our on-going work on
measuring and optimizing smartwatch energy consumption. We
derived power models for commodity smartwatches, and then
applied the power models to real smartwatch workload collected
from an IRB-approved user study involving 30 smartwatch users
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Figure 1: Power measurement of an LG Urbane watch.

at Indiana University. We found that smartwatches exhibit energy
consumption characteristics that are very different from those
of smartphones. For example, on average, more than 50% of
a watch’s energy is consumed when the watch is in sleeping
mode. And surprisingly, displaying the watch face accounts
for more than 30% of the overall watch energy consumption.
Based on our measurement findings, we propose concrete solutions
for improving the energy efficiency of smartwatches, such as
energy-efficient watch face display, smart display dimming, and
adding delay-tolerant support to push notification delivery. To our
knowledge, this is the most comprehensive and in-depth study of
smartwatch energy consumption. We believe our findings will also
shed light on improving the energy-efficiency of other wearable
devices.

2. SMARTWATCH POWER MODELING
A prerequisite for fine-grained energy analysis is a power model,

which is a function E( ~A) that maps ~A to their incurred energy
and power consumption where ~A corresponds to system activities
and events directly measurable on the device. In the literature,
numerous studies have derived energy models for smartphones [12,
10, 3]. Nevertheless, to our knowledge, no comprehensive model is
available for smartwatches whose energy consumption profiles are
quite different.

To fill the above gap, we are building power models for popular
smartwatches. Here we show preliminary results of a coarse-
grained power model for an LG Urbane watch. The watch runs
Android Wear OS. It is equipped with a Cortex A7 processor,
4GB storage, 512MB memory, 1.3-inch P-OLED display, Wi-Fi,
Bluetooth, and various sensors. Our modeling approach follows the
high-level methodology for smartphone power modeling [12, 3].
We measure the power consumption of the following components
using a Monsoon power monitor [1]: device baseline (in both
sleeping and awake mode), CPU, display, Bluetooth, Wi-Fi, and
touch screen. As shown in Figure 1, we carved out a compatible
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Component Power Consumption (mW)
Sleep (watch face off) 10.9 for the entire device
Sleep (watch face on) 23.5 for the entire device
Wakeup baseline 43.5
CPU 184.7u− .6, u ∈ (0,1]: CPU util.
Display (default

∑
(.030r + .127g + .233b+ 93.7)/K

brightness level) Per-pixel r, g, b ∈ [0, 255], K=320*320
Wi-Fi Tail Duration: 0.18 sec, Power: 178.3
Wi-Fi Promotion Duration: 0.30 sec, Power: 299.6
Wi-Fi Data Tx: 739.9, Rx: 400.1
BT Tail Duration: 4.8 sec, Power: 97.2
BT Data Tx: 180.7, Rx: 174.9
Screen touch/swipe 118.9

Table 1: A Preliminary Power model for LG Urbane watch.

battery interface circuit from a smartphone by the same vendor,
and then used the interface circuit as an adapter between the watch
and the power monitor. When measuring a component, we keep
other components offline (e.g., Wi-Fi and BT) or at a steady power
state (e.g., display and CPU) whose power consumption is then
subtracted from measured power value. For components involving
parameters (e.g., CPU utilization), we programmably change them
and use regression to derive an empirical model.

Table 1 presents our results. We highlight some key findings
below. (1) The CPU power is determined by three factors: the
number of cores, the frequency of each core, and the utilization of
each core. Our watch is equipped with a quad-core Qualcomm
Cortex A7 processor. However, three of the cores are forced
to be offline by the OS, and the clock of the only online core
is fixed at 768 Mhz. This is a common practice on Android
smartwatches [8]. Therefore, the only factor affecting the power is
the CPU utilization, and we found both are linearly correlated. (2)
The watch has 1.3 inch 320x320 P-OLED display, whose power
is determined by the brightness level and the pixel colors [4].
We found blue is the most energy-consuming color, followed by
green and then red. (3) The Wi-Fi state machine is similar to
that of smartphones [3] except that we observe a non-trivial state
promotion delay of 0.3s. (4) The BT state machine consists of
an idle and an active state. The state promotion takes negligible
time, while the demotion from active to idle state is triggered by an
inactivity timer of 4.8s.

On-going Work. We believe power models of other
smartwatches can be derived in a similar manner without requiring
proprietary information from their vendors. Also we are refining
the model by considering more details such as the display
brightness, the signal strength, and various sensors’ power
consumption. We will also perform thorough validation of our
models.

3. ENERGY CONSUMPTION OF
SMARTWATCHES IN THE WILD

We conducted a user trial to understand the energy consumption
of smartwatches in the wild. This IRB-approved user trial involves
30 diverse smartwatch users at Indiana University. Each user
was given an LG Urbane watch. We developed a lightweight
data collector that collects information needed to derive the power
consumption from our preliminary power model. The collected
data was uploaded to our server at night when the watch is being
charged. The user study was deployed in April 2016 and the data
collection is currently in progress.

Compared to controlled in-lab experiments, a key advantage of
our user study is it helps understand the energy consumption under
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Figure 2: Energy breakdown of (a) smartwatches from our user
study, and (b) smartphones from a prior study [2].

realistic usage scenarios. Here we show preliminary data analysis
results based on a one-month trace. The methodology is as follows.
From our collected data, we compute the total energy consumption
of different hardware components (CPU, display, radio, etc.) across
all 30 users. The energy consumption covers all usage periods
except when the watch is being charged. Figure 2a shows the
breakdown, which is further compared with the smartphone results
shown in Figure 2b. The smartphone results were obtained from
a recent crowd-sourced measurement study [2] conducted by Chen
et al. We describe our key findings below.

• Surprisingly, for smartwatch, more than half of the energy is
spent when the watch is in sleeping (idle) mode illustrated
by the shaded pies in Figure 2a. This is explained by two
reasons. First, the power consumption in sleeping mode is
not trivial. In particular, unlike smartphones, the display of
the watch remains on in sleeping mode (despite its brightness
being reduced) so the user can get the time reading. The
watch face display accounts for 30.1% of the overall energy
consumption. Second, the active usage periods of watches
are much shorter than those of phones due to the very
nature of the applications on watches: time checking, push
notification, voice control, etc. As a result, the sleeping mode
becomes an important component in determining the overall
energy consumption.

• When the watch is in active use (the solid pies in Figure 2a),
despite its small screen size, the display is still the biggest
energy consumer, accounting for 40.4% (17.7%) of the
active-mode (overall) energy consumption. Also the CPU
contributes less (but still non-trivially) to the overall energy
consumption, likely because the LG Urbane watch always
runs on a single core with fixed frequency. Note this is a
common practice on many Android watches [8].

• Compared to a smartphone, a watch’s radios (Bluetooth
and Wi-Fi) play a less important role in draining the
battery. This is attributed to two reasons. First, the vast
majority of smartwatches (including ours) do not have a
cellular interface that is much more power-hungry than short-
range radios such as Wi-Fi and Bluetooth. Second, traffic
generated by watches has much lower volume compared to
its smartphone counterpart.

On-going Work. The preliminary analysis of our pilot user
study data indicates that smartwatches’ energy consumption profile
differs considerably from that of smartphones. Leveraging our on-
going user study, we are conducting more in-depth analysis such as
the following. (1) How diverse is the smartwatch energy efficiency



across users/applications? (2) How does a user’s usage behavior
affect the watch’s energy consumption? (3) How predictable is the
energy consumption from historical usage data? (4) What is the
energy overhead incurred on the phone when it is paired with a
smartwatch? Note that to answer the last question, we also need
to do instrumentation on users’ phones using energy profiling apps
such as eStar [2].

4. IMPROVING ENERGY EFFICIENCY
FOR SMARTWATCHES

The crowd-sourced measurement in §3 provides us with deep
insights for our ultimate goal of improving the energy efficiency
for smartwatches. We next describe several promising directions
we are currently investigating.

• Energy-efficient Watch Face Display. Figure 2 indicates
that the watch face display accounts for more than 30% of
the overall energy consumption. A natural idea is thus to take
energy efficiency into consideration when designing watch
faces, and to make users aware of the energy costs. The
watch face selector can provide energy efficiency ratings for
different watch faces. For example, for OLED display, a
watch face with black background is much more energy-
efficient than one with white background. Also a watch can
switch to “greener” faces when the battery level is low.

• Smart Display Dimming. The brightness level is an
important factor determining the display power. By default,
Android Wear displays the watch face in low brightness
level when the watch is in sleeping mode, and increases
the brightness when the watch wakes up. We note that a
key use case of a watch is to check the time. It is handled
by Android Wear as follows. When the user turns the
watch toward herself to look at it, the sensors (accelerometer
and gyroscope) will detect this action and wake up the
watch automatically. However, Android Wear uses a simple
inactivity timer (5 seconds) to dim the watch. In other words,
even if the user just takes a glimpse at the watch, the watch
face will still light up for 5 seconds. It may seem this is not
a big issue, but given a user may have tens of even hundreds
of short interactions with the watch every day, such a static
timer may cause considerable energy overhead. We thus
propose to dynamically and intelligently set this timeout to
save energy. One possible way is to also use sensors to detect
when the user moves her wrist away so that the display can
be immediately dimmed.

• Delay-tolerance Support for Push Notification. Besides
functioning as a timer, a smartwatch’s most important
application is receiving push notifications of phone calls,
instant messages, weather updates, news, etc. The Android
Wear OS treats all notifications equally important, and
immediately wakes up the watch as long as a notification
is received. This causes high energy overhead when
notifications appear frequently. Our key observation is that
many notifications are delay-tolerant. Therefore, multiple
notifications can be delivered to the watch (from its paired
phone) and presented to the user in a single batch to
reduce the energy footprint. Doing so also helps make the
watch less distractive when there are a large number of
notifications. We plan to design and implement a new OS
service allowing app developers to specify urgent levels or
delivery deadlines of notifications. We will also develop

an algorithm that strategically schedules the notification
delivery to minimize the energy consumption while meeting
the delivery deadlines.

On-going Work. We are designing and implementing the
above solutions. We will first evaluate them using controlled
experiments before deploying them to our user study. We are also
actively exploring other directions at various layers that can make
smartwatches more energy-efficient.

5. RELATED WORK
Compared to a plethora of work in improving smartphones’

battery life, little effort has been made toward measuring and
optimizing energy consumption of smartwatches (and wearables in
general). LiKamWa et al. characterized the energy consumption
of Google Glass [7]. Recently, Min et al. studied the practices for
smartwatch battery use and management, using a combination of
online survey and a user study involving 17 Android smartwatch
users [9]. Compared to our on-going work, they collected a
much smaller set of data (battery level, charging status, etc.)
in their user study, and only examined the overall device-level
energy consumption. Also their work did not propose concrete
solutions for improvement. There are other studies of wearables
on OS performance [8], user engagement [5], storage [6], and
networking [11]. None of them focuses specifically on energy.
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