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ABSTRACT
Volumetric videos offer six degree-of-freedom (DoF) as well as
3D rendering, making them highly immersive, interactive, and ex-
pressive. In this paper, we design Nebula, a practical and resource-
efficient volumetric video streaming system for commodity mo-
bile devices. Our design leverages edge computing to reduce the
computation burden on mobile clients. We also introduce various
optimizations to lower the perceived “motion-to-photon” delay, to
dynamically adapt to the fluctuating network bandwidth, and to
reduce the system’s resource consumption while maintaining a
high QoE.
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1 INTRODUCTION
This paper examines volumetric videos1, an emerging immersive
media, and explores how to efficiently stream them to mobile de-
vices. Compared to regular videos and 360° panoramic videos that
recently became popular, volumetric videos are unique in two key
aspects. First, regular and 360° video content is on either a plane
or a sphere. Volumetric videos are instead truly three-dimensional:
they consist of not 2D pixels, but elements such as voxels (volume
pixels) or 3D meshes (polygons). Second, volumetric videos provide
six degrees of freedom (6DoF), allowing a viewer to freely change
both the position (X, Y, Z) and the orientation (yaw, pitch, roll) of
her viewport. By contrast, regular videos provide no viewport free-
dom, and 360° videos allow only 3DoF as the viewer’s translational
position is always fixed.

Both features above make volumetric videos highly immersive,
interactive, and expressive. They can support numerous innovative
applications from entertainment to medical and education. Volu-
metric videos can be represented in different ways. In this paper,
we exemplify our approaches using the Point Cloud (PtCl) repre-
sentation where each video frame consists of multiple voxels or
1A demonstration of high-quality volumetric video streaming can be found at
https://www.youtube.com/watch?v=feGGKasvamg.
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points [13]. Nevertheless our high-level approaches are applica-
ble to other sophisticated representations such as 3D meshes [17].
PtCl is a popular way to represent 3D objects due to its simplistic
data structure and good rendering performance. Static PtCls have
been well studied in the computer graphics and multimedia com-
munities (§5). However, existing work has not studied the delivery
of volumetric videos that consist of a stream of PtCls to resource-
constrained mobile devices and over bandwidth-limited wireless
links, which is the focus of this paper.

Streaming volumetric videos is challenging due to several rea-
sons. First, they are extremely bandwidth-consuming (§3), and thus
their wireless delivery may require the support from future 5G
networks [1]. Second, unlike regular pixel videos that can be de-
coded using dedicated hardware, decoding volumetric videos can
only be done by software today. This results in high computational
overhead. Third, adaptive-bitrate (ABR) video streaming systems
typically have several key components such as rate adaptation, QoE
inference, and buffer control. Little research has been done on any
of these aspects for volumetric video streaming on mobile devices.

In this paper, we begin with developing a proof-of-concept PtCl
player on Android platform (§3), and use it to conduct measure-
ments to demonstrate several key challenges described above. Based
on our observations, we present a holistic design of a practical PtCl
video streaming system for commodity smartphones. We call our
system Nebula, whose key design aspects consist of the following.
• Layered Content Organization (§4.1). We devise a DASH-style
scheme to organize the content on the server side. By leveraging
the unique characteristics of PtCl data, we delta-encode each video
chunk into layers to allow its quality to be incrementally upgraded.
• Edge Assistance (§4.2). Since directly decoding a compressed
PtCl video on a phone is expensive, we introduce an edge (proxy)
server in Nebula. The proxy transcodes the PtCl stream into a regu-
lar pixel-based video stream, which captures the viewer’s viewport
and can be efficiently decoded on smartphones. We propose various
optimizations to reduce the motion-to-photon delay [2] between
the client and the proxy.
• Rate Adaptation (§4.3). Nebula integrates two separate rate
adaptation mechanisms, with one running between the phone and
proxy, and the other between the proxy and the server, to adapt
the video quality to the varying network condition. In particular,
we propose directions toward developing a robust rate adaptation
algorithm for volumetric videos.
•Viewport Adaptation (§4.4). For a spatially large PtCl or a scene
with multiple scattered PtCls, fetching or decoding the entire PtCl
may be infeasible. In this case, Nebula applies viewport adaptation
that allows the proxy to fetch only the portions that the viewer is
seeing or about to see, based on predicting the 6DoF movement
of the viewport. We further propose optimizations that reduce the
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resource utilization while maintaining a high QoE for viewport
adaptation.

2 VOLUMETRIC VIDEOS: A PRIMER
Capturing. Volumetric videos are captured using multiple RGB-D
cameras with depth sensors, e.g., offered by Microsoft Kinect, Intel
RealSense, and various LIDAR scanners [23], which acquire 3D
data from different viewpoints. The acquired data is then merged
to obtain the entire scene. During the merging process, frames
captured by different cameras should be properly synchronized,
their coordinates be unified, and noises be removed. The whole
processing pipeline can be realized by open-source software such as
LiveScan3D [14], a 3D data acquisition system supporting multiple
Kinect devices.
Representation. Point cloud (PtCl) and 3D mesh are two popular
ways to represent volumetric videos. 3D mesh has been exten-
sively investigated by the computer graphics community for a long
time [17]. It employs a collection of meshes, which can be triangles,
quadrangles, or general polygons, to represent the geometry of
3D models. Although 3D mesh can accurately model objects, its
algorithms are complex as they need to maintain the topological
consistency in the processing pipeline [13]. In contrast, PtCl is a
much more flexible and simpler representation as introduced in §1.
Compression (i.e., encoding) of 3D objects has been well studied
in the literature, with the state-of-the-art compression scheme be-
ing octree-based approaches [7, 11, 18]. An octree is a tree data
structure that partitions a 3D region by recursively dividing it into
eight subregions [24], with the levels of detail being controlled
by the height of the tree. When applied to a PtCl, an octree effi-
ciently stores the points in such a way that its nodes correspond
to regions that contain at least one point, and the best estimation
of the points’ locations is given by the leaf nodes. In addition to
compressing a single PtCl (or a single PtCl video frame), the octree
can be extended to perform delta encoding between two PtCls (or
inter-frame compression for a PtCl video) [12]. Note that as of today,
decoding volumetric videos is typically performed by software. But
as volumetric video becomes more popular, dedicated hardware
support for volumetric video decoding may appear in the future.

3 PTCL STREAMING ON SMARTPHONES
We examine the performance of volumetric video streaming on
mobile devices, to motivate the design of Nebula.

PtCl Video Player. Despite existing efforts on volumetric video
streaming [10, 21], fewer studies, if any, have been conducted on
understanding its performance on commodity smartphones. We
thus first develop a PtCl video player for Android. Our player was
written in Java and C++ in 2,800 LoC. It is capable of playing PtCl
videos hosted locally or remotely (fetched over TCP). The videos
can be in either raw or compressed format. A raw video contains
a series of frames to be played at a fixed rate (e.g., 24 or 30 FPS).
Each frame consists of a PtCl i.e., a list of 3D points. Each point
occupies 9 bytes: its position (X, Y, Z, 2 bytes each) and its color (R,
G, B, 1 byte each). A compressed video has a similar format except
that each frame (PtCl) is encoded using an octree (we have not
yet implemented inter-frame compression). The player maintains

a playback buffer of up to 50 frames, and plays each frame by
rendering its PtCl using OpenGL/GPU.

During a playback, the viewer can freely change the viewport’s
position (X, Y, Z) and orientation (yaw, pitch, roll). For intuitive
interactions, the viewer can select one of three modes and swipe
the screen to change the viewport: Orbit (rotating the viewport
around the Y axis), Zoom (moving the viewport along the Z axis,
closer or further to the origin), and Pan (moving the viewport along
the X or Y axis).

Dataset.We use a volumetric video captured at AT&T Shape [1].
Depicting a female singer, it allows viewers to immersively watch
her performance. The video consists of 3,188 frames, and each frame
contains on average 50,360 points. Using this video, we further
construct four other videos with sparser or denser points: 12.6K,
25.2K, 75.5K, and 100.7K on average in a frame. We make the points
sparser by performing random sampling, and make them denser
by adding noises (randomly generated points) to each frame.

Measurements. We next use our player to measure the stream-
ing performance. All experiments were conducted on Samsung
Galaxy S8, a state-of-the-art smartphone as in 2018. Unless other-
wise stated, all reported measurement results are averaged over 5
playbacks of our test video described above.

Observation 1. Rendering an uncompressed (decoded) PtCl video
is fast. We begin with playing uncompressed PtCl videos locally.
As shown in the “Avg Render FPS” column in Table 1, depending
on the frame density, the average FPS ranges from 173 to 1110,
considerably higher than the required frame rate of 24 FPS. This
is attributed to the simplicity of the PtCl structure that allows fast
rendering, compared to other complex representations such as 3D
mesh [11, 13].

Observation 2. Transferring uncompressed PtCl video is challenging
over today’s wireless networks.We next stream the uncompressed
videos from a server to a client over commercial LTE networks.
Despite the high bandwidth (up to 40Mbps) offered by LTE, the
playback experienced unacceptably long stalls for almost all videos.
The reason is simply the large frame size as shown in Table 1. For
a PtCl video with 50K points per frame, the required bandwidth
for streaming uncompressed frames at 24 FPS is 9 × 50K×24 × 8 =
86.4Mbps.

Observation 3. Decoding performance on today’s mobile devices
is poor. Given the above observation, a natural idea is to encode
(compress) a PtCl video before its transmission. We thus cross-
compile the Point Cloud Library (PCL [3]), a production-quality
library for PtCl processing, on Android. We integrate PCL into our
player by using PCL’s built-in functions for efficient octree-based
PtCl encoding and decoding. Surprisingly, as shown in Table 1, the
decoding performance on SGS8 is very poor, with the FPS ranging
from 1.5 to 13.9, due to the costly operations of walking through
the octree, inspecting each node, and reconstructing the decoded
data to be consumed by the OpenGL shader.

Octree-based encoding is typically lossy. Therefore PCL supports
different resolution profiles that control the video quality by ad-
justing the height of the octree. The results in Table 1 are for the
low-resolution profile (favoring faster decoding, higher compres-
sion ratio). Table 2 shows the phone-side decoding performance for
medium- and high-resolution profiles, whose FPS and compression
ratio further degrade.
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Avg # Frame Avg Render Dec. FPS Dec. FPS
Points Size FPS (Phone) (Phone) (Server)
12.6K 0.11MB 1110.8 13.9 41.7
25.2K 0.23MB 776.0 7.2 20.2
50.4K 0.45MB 351.6 3.5 10.1
75.5K 0.68MB 233.3 2.1 6.1
100.7K 0.91MB 173.3 1.5 4.4

Res. Dec. FPS Comp.
Profile (Phone) Ratio
Low 3.5 36.3%
Med 3.2 25.4%
High 3.0 15.7%

# Dec. FPS Dec. FPS
Threads (Phone) (Server)

1 3.5 10.1
2 7.0 19.0
4 8.6 34.3
6 8.2 41.3
8 6.7 47.0

Table 1: PtCl stream rendering performance on SGS8 and
decoding performance on SGS8 and an edge server (1 thread,
low-resolution profile).

Table 2: Decoding performance
on SGS8 for different resolution
profiles (1 thread, 50K points per
frame).

Table 3: Multi-core decoding perfor-
mance on SGS8 and an edge server (low-
res profile, 50K points per frame).

Similar to regular videos, there are two opportunities one can
leverage: intra-frame compression, which compresses a single PtCl,
and inter-frame compression, which delta-encodes a PtCl based on
another PtCl (e.g., of a previous frame). The above results as well as
most existing studies only concern with intra-frame compression
(as a result the compression ratios in Table 2 are low). Applying
inter-frame compression can further reduce the video size, but at
the cost of even slower decoding speed on smartphones.

Observation 4. Multi-core decoding provides limited performance
improvement on smartphones. A straightforward idea to boost the
decoding performance is to leverage the multiple CPU cores to con-
currently decode multiple frames. We implement multi-threaded
decoding in our player. Our SGS8 phone is equipped with an octa-
core CPU. However, as shown in Table 3, when using 4 threads, the
decoding FPS only increases by 1.5× compared to single-threaded
decoding. Also, launching more than 4 threads causes the perfor-
mance to degrade. This may be possibly attributed to multiple
factors such as shared I/O and limited CPU cache. Note that PtCl
decoding may also be accelerated by GPU. Nevertheless, GPUs on
mobile devices are significantly weaker than those on PCs/servers
due to the fundamental constraints of energy consumption and
heat dissipation.

4 THE DESIGN OF THE NEBULA SYSTEM
We now detail the design of the Nebula system whose architecture
is shown in Figure 1.

4.1 Video Content Organization
To store the PtCl content, Nebula employs a scheme that is compli-
ant with DASH (Dynamic Adaptive Streaming over HTTP). Video
frames are properly compressed using both intra-frame and inter-
frame encoding. The PtCl stream is then segmented into chunks
each having a fixed duration. A manifest file will be provided to
the client to inform the URL of each chunk.

LayeredRepresentation. In traditional DASH schemes, a chunk
has multiple independently encoded versions corresponding to dif-
ferent quality levels. Nebula instead leverages the unique charac-
teristics of PtCl chunks by organizing the chunk data (the points)
into layers. Assume a PtCl chunk has n versions/layers. Among
all versions, only the lowest version (layer) L0, which contains the
smallest number of points, is self-contained; the next lowest layer
L1 only contains the delta from L0. In general, the client needs to
fetch all layers from L0 to Li , and to combine their points to form
the actual chunk data belonging to the version of the i-th quality
level. Such a layered representation greatly improves the flexibility

of the rate adaptation algorithm by allowing incrementally upgrad-
ing a chunk’s quality (§4.3). For intra-frame encoding using an
octree, different layers’ encoded data can be generated by vertically
partitioning the tree. The partition method for inter-frame encod-
ing can also be developed, with the constraint that encoded data of
a given layer should only depend on the same or lower layers of
other frames within the same chunk.

We note that the underlying concept of layered encoding is not
new. It has been proposed in the context of regular pixel-based
videos, known as Scalable Video Coding (SVC). However, SVC has
never registered commercial deployment due to its high complexity
and high encoding overhead [15]. In contrast, our layered encoding
scheme for PtCl is simple due to the very nature of PtCl, whose
points belonging to different layers can easily be merged.

4.2 Edge Offloading
Our findings in §3 suggest that directly decoding a PtCl video
stream on today’s COTS smartphones might be challenging.Nebula
therefore offloads the PtCl decoding to an edge server (proxy).
Specifically, the client keeps reporting its viewport’s position and
orientation to the edge proxy. Meanwhile, the proxy fetches the
PtCl stream from the remote server, decodes it, and transcodes it
(based on the viewport’s position and orientation) into a regular
pixel-based video stream. The transcoded video is then sent to the
client, which can efficiently decode the video through, for example,
its hardware H.264/H.265 decoders.

We demonstrate that a commodity edge server is capable of
decoding PtCl streams at the line rate. We repeat the decoding
experiments in §3 on a commodity server with Intel Xeon E3-1240
processor at 3.5GHz (launched in 2015), 16GB memory, and 1TB
SATA HDD. As shown in Table 1, for single-core decoding, the
server outperforms our SGS8 smartphone by about 200% in terms
of FPS. Table 3 compares the multi-core decoding performance
between the phone and server. The server’s performance scales
well with the number of threads, and outperforms the phone by
up to 450% under multi-core. For 12.6K, 25.2K, 50.4K, 75.5K, and
100.7K points per frame, our server achieves decoding FPS of up to
190, 95, 47.0, 29.2, and 21.4, respectively.

The Overall Processing Pipeline on the proxy side consists
of the following five tasks: (1) fetching the PtCl data from the
server (I/O bound), (2) decoding the PtCl stream (CPU bound), (3)
rendering the PtCl stream based on the client’s viewport position
and orientation (GPU bound), (4) encoding the rendering result into
a pixel video stream (DSP), and (5) sending the pixel video to the
client (I/O). Note that the above tasks consume different types of
system resources and thus can be executed in a pipelined manner.
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Figure 1: The Nebula architecture. Components in red boxes relate to viewport adaptation (§4.4)
that may be optionally enabled.

C

Figure 2: Transcoding a PtCl
frame to multiple subframes, each
with a different viewport, to reduce
the motion-to-photon latency.

Now let us consider the actual transcoding process. A simple
approach is to take a single “snapshot” for the current viewport
position and orientation reported by the client. Let t1 be the time
when the client reports its viewport v , and t2 be the time when
the frame transcoded for v is displayed. Under the above transcod-
ing approach, the delay t2 − t1 is the so-called “motion-to-photon”
latency [2] (i.e., the time taken for a viewport movement to be
reflected on the screen).

We next examine this critical QoE metric. In the five tasks de-
scribed above, Tasks (1) and (2) do not depend on the client’s real-
time viewport information so the decoded PtCl data can be buffered
beforehand. Only (3), (4), and (5) contribute to themotion-to-photon
latency. To quantify it, we conduct experiments on a DELL laptop
(as an edge server) with an NVIDIA GTX 1080 GPU. On this laptop,
rendering a PtCl frame with 50K points takes less than 1ms, and
the per-frame encoding time for 4K, 2K, and 1080p H.264 videos is
10ms, 5ms, and 3ms, respectively. We then measure the per-frame
decoding time on SGS8, which is 11ms, 5ms, and 3ms for 4K, 2K, and
1080p frames, respectively. Thus, the motion-to-photon delay for
4K, 2K, and 1080p resolutions are 21ms, 10ms, and 6ms, respectively,
plus their corresponding network transmission time (including the
uplink latency for reporting the viewport).

Multi-viewport Transcoding. We consider further reducing
the motion-to-photon delay. Recall that when a motion occurs, the
user’s intended viewport at t2 may be different from the displayed
viewport i.e., the one at t1 (t1 and t2 defined previously). Such a
discrepancy degrades the QoE. Our basic idea is thus to let the proxy
transcode one PtCl frame into multiple pixel-based frames (called
subframes), which include not only the reported viewport (at t1), but
also its nearby viewports for t2 based on predicting the (short-term)
viewport movement. Ideally, if the prediction is accurate, then at t2,
one of these subframes’ viewports will match the user’s intended
viewport. Displaying it effectively eliminates the motion-to-photon
delay. In reality, we anticipate that some of these viewports will
be at least close to the user’s intended viewport, thus reducing the
impact on QoE.

Consider the two-dimensional example shown in Figure 2. The
current viewport position isC and covers the dark blue area with a
FoV (field-of-view) of α . When actually generating the subframes,
the proxy will take two approaches. First, it generates subframes at
nearby locations (in red dots) to accommodate the potential trans-
lational movement of the viewport. Second, the proxy may enlarge

some subframes’ viewports (e.g., to α ′ > α ) to tolerate the possible
rotational movement. A larger-than-FoV subframe will be gener-
ated using a panoramic representation such as Equirectangular or
CubeMap so any FoV covered by it can be restored.

To facilitate deciding which viewports to transcode, Nebula em-
ploys effective algorithms to predict the 6DoF viewport movement.
This is inspired by the fact that in 3DoF panoramic video stream-
ing, there were studies showing that the yaw, pitch, and roll can
be accurately predicted in the near future (less than 0.5 seconds
or so) [22]. Then, leveraging the short-term prediction algorithms,
Nebula can dynamically decide how many and which viewports
(subframes) to include, as well as each viewport’s position and size
(α ′). Several factors affect the decision: the speed, direction, and
mode (orbit, zoom, pan) of the viewer’s viewport movement as well
as its prediction accuracy.

Client-side SubframeDecoding, Selection andReconstruc-
tion. The proxy then encodes the multiple subframes (transcoded
from a PtCl frame) into a “mega frame” and sends it to the client.
Due to their proximity, typically the subframes are visually similar,
allowing efficient cross-subframe compression. During a playback,
the client picks one subframe from each mega frame, decodes it, and
displays it. To reduce the decoding overhead, Nebula can leverage
new codec features such as the Tiling Mode [19] in H.265 to let the
client decode only its selected subframe in a mega frame. Regard-
ing the actual selection policy, the selected subframe’s viewport
should be the closest to the user’s intended viewport. We will also
investigate the feasibility of using fast 2D scene reconstruction [8]
to achieve better viewport approximation by “interpolating” the
received subframes when user’s viewport C is not aligned exactly
with the red dots in Figure 2.

4.3 Rate Adaptation
A rate adaptation algorithm (RAA) dynamically adjusts the video
quality based on the available network bandwidth. In Nebula, due
to the transcoding proxy, we need to consider two types of RAAs:
one runs between the client and the proxy for the pixel video stream,
and the other operates between the proxy and the server for the
PtCl stream.

The Client-proxy RAA is overall similar to a traditional RAA.
However, one key difference is the multi-viewport (subframe) na-
ture in Nebula. Therefore a challenge here is how to assign quality
levels to different subframes. A simple approach would be to treat
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a mega frame as a single unit by assigning the same quality level to
all its subframes. An advanced solution would be to assign different
quality levels to them based on their probabilities of being selected.

The Proxy-server RAA differs vastly from existing RAA due
to two reasons. First, it operates on PtCl streams whose many
characteristics such as bitrate dynamics and QoE metrics are very
different from those of traditional pixel-based videos. Second, recall
from §4.1 that PtCl chunks are progressively encoded into layers;
therefore, to be more bandwidth-adaptive, the RAA should have
the capability of incrementally upgrading an existing chunk by
fetching additional layer(s). We next describe two essential steps
toward developing a robust RAA for PtCl videos: deriving QoE
metrics and designing the actual RAA.

Deriving QoE Metrics. For traditional videos, a commonly
agreed QoE metric is a weighted sum of several components: bi-
trate, stall duration, video quality switch, etc. [25]. QoE metrics for
volumetric videos, however, still remain an open problem (see §5).

We exemplify several interesting research questions we would
like to answer. (1) Compared to users watching regular videos
(0DoF) and 360° videos (3DoF), are PtCl video viewersmore sensitive
to stalls as they exercise their 6DoF when navigating in the 3D
space? (2) How do quality changes in a PtCl stream impact the
viewer’s QoE? (3) A new dimension in 6DoF videos is the distance
from the viewer to the PtCl. As the viewing distance becomes larger,
how should we reduce the PtCl quality while still maintaining a
good QoE?

To get the QoE ground truth, we plan to conduct IRB-approved
user studies. We will play strategically crafted PtCl videos to the
subjects and ask them to give subjective scores. The ground truth
will be leveraged to build a comprehensive QoE model of PtCl video
streaming on mobile devices.

Designing RAA for Layered PtCl Stream. Among many can-
didate solutions, Nebula employs an RAA under a discrete opti-
mization framework [25], which provides a principled way for rate
adaptation. Specifically, it periodically examines a finite window
of the next N chunks, and searches for a quality assignment that
maximizes a utility function derived from the QoE model (the above
task). Incremental chunk upgrade can be easily integrated into the
optimization framework: even if a chunk has already been down-
loaded, it will still be considered by our RAA as follows. Assume a
fetched chunk has a current quality level of l . The RAA will set a
search space from l to the highest quality level. Then if the RAA
computes a level higher than l , the additional layer(s) will be fetched
to upgrade the chunk.

A challenge we need to overcome is the potentially high runtime
overhead of our RAA, whose single invocation incurs an overhead
of O(QN ) if an exhaustive search is performed (N is the search
window size and Q is the total number of quality levels). Such
an overhead may be effectively reduced by, for example, reusing
previous computation results and applying various heuristics.

4.4 Viewport Adaptation
Use Case: a PtCl Zoo. So far we assume a PtCl video contains
only one point cloud, whose entire stream is fetched by the proxy.
We now consider a more general scenario where the entire scene,
oftentimes consisting of multiple PtCls, is too large to be fetched

as a whole. Consider a virtual zoo application. It is comprised of a
static 3D background and many animals each being rendered as a
PtCl video. At a given time, a user “walking” in the zoo can see only
a small subset of all animals. For large animals such as a dinosaur,
the user may see only part of it when standing close to it.

Streaming this virtual zoo is very different from and consumes
much higher bandwidth than today’s VR apps, whose dynamic
objects typically consist of very short animation sequences [5]. To
efficiently stream the PtCl zoo to amobile device, our previous build-
ing blocks such as edge transcoding, rate adaptation, and layered
representation remain useful. In addition, we need the mechanism
of viewport-adaptation where the proxy prefetches only the con-
tent that the viewer is about to see. This is the key mechanism for
reducing the server-to-proxy traffic and the proxy-side workload.

3D Point Cloud Blocks. A prerequisite of viewport-adaptive
streaming is to segment (when necessary) a PtCl chunk into blocks [20].
A block has the same duration as a chunk but only occupies a
smaller, bounded 3D region. With their URLs listed in the manifest
file, blocks can be independently fetched and decoded, thus pro-
viding a mechanism of partially fetching a PtCl. In addition, as a
block may move, the client needs to be aware of the block’s position
during its playback (we will shortly see why). To realize this, for
each block, we include the moving trajectories of the eight corners
of its bounding box in the manifest file.

Viewport Adaptation. Let us first assume an ideal scenario
where the viewer’s 6DoF movement trajectory is perfectly known.
Then at any given time, by knowing the position and orientation of
the viewport, as well as the positions of the eight corners of each
block’s bounding box, the proxy can quickly compute the set of
blocks (more accurately, their bounding boxes) that the viewer sees
and therefore should be fetched.

In reality, however, due to the viewer’s movement randomness,
we need to predict her 6DoF viewport movement. This prediction
differs from the short-term prediction described in §4.2 (for multi-
viewport transcoding) in the time scale: here the prediction needs
to be more ahead of time (e.g., 1 to 2 seconds) due to the extra delay
the proxy takes to fetch, decode, and render the PtCl blocks. Unfor-
tunately, even for 3DoF viewport movement, its predictability de-
creases considerably as the prediction window becomes longer [22].
We expect that long-term 6DoF prediction may also be challeng-
ing. We plan to conduct a user study that collects real users’ 6DoF
movement traces, and study their predictability.

Despite the potential challenges described above, we do believe it
is feasible to design a practical viewport-adaptive streaming scheme
by leveraging an edge proxy. We highlight several high-level design
principles below.
• The proxy should account for both the bandwidth and its decoding
capability when deciding which blocks to fetch.
• The proxy can use the environment (walls, obstacles, etc.) to
quickly filter out blocks that the viewer cannot see.
• To minimize the risk of stalls, even if a block has a low probabil-
ity of being perceived, the proxy may still need to conservatively
fetch it at a low quality, and incrementally upgrade it later when
necessary (§4.3).
• Distant blocks are shown in small sizes to the viewer, so they can
also be fetched at a low quality per the QoE model. For such distant
blocks, when the resource is limited, the proxy may even just fetch
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a single frame that is statically displayed to satisfy a minimum user
experience requirement.

5 RELATEDWORK
Compression of PtCl and 3D mesh has been well investigated
in the literature. In particular, several variations of octree-based
(§2) compression have been proposed (e.g., [7, 11, 24]). Kammerl
et al. extended the octree to perform inter-frame compression for
real-time 3D data acquisition [12]. Another inter-frame compres-
sion scheme based on iterative closest points (ICP) algorithm was
proposed by Mekuria et al. [18]. We refer readers to [17] for 3D
mesh compression.

Streaming volumetric videos is a new topic. Very recently (2018),
Park et al. [21] sketched a greedy volumetric video streaming al-
gorithm that considers video bitrate, visibility, and the distance
from the viewer. DASH-PC [10] extends DASH to PtCl streaming.
It proposes sub-sampling dense PtCls to create different quality
representations, as well as designs a DASH-style manifest file for-
mat. Compared to both proposals, Nebula is a holistic PtCl video
streaming system designed specifically for mobile devices, with
unique features such as edge assistance, perceived delay reduction,
principled rate adaptation, and incremental quality upgrade.

QoE Metrics have been well studied for regular videos, but
remain an open problem for volumetric video streaming.Most of the
existing work focuses on assessing the quality of a static 3D model,
with the referencemodel known, using simple metrics such as point-
to-point distance or angular similarity [4]. For volumetric videos,
researchers have done limited subjective tests or simply used the
above per-frame distortion metrics [6]. However, it is well known
that (for regular videos) traditional image quality metrics such as
PSNR and SSIM do not correlate well with subjective measures
(QoE). The same likely holds for volumetric videos. We thus plan to
thoroughly investigate their QoE metrics by considering the impact
of, for example, stalls, quality changes, viewing distance, and the
motion-to-photon delay.

VR and 360° Video Streaming Systems. Finally, there exist a
plethora of systems on mobile VR and 360° video streaming. Rep-
resentative research prototypes include FlashBack [5] (boosting
mobile VR quality through caching rendered scenes), Furion [16]
(cloud-assisted VR through separating foreground and background
content), Rubiks [9] (tile-based 360° video streaming), and Flare [22]
(another viewport-adaptive 360° video streaming system for smart-
phones with further optimizations). Compared to VR and 360° video
streaming, PtCl streaming faces numerous challenges such as poor
decoding performance on smartphones, a lack of rate adaptation
algorithms, and the difficulty for predicting the 6DoF viewport
movement, as well as unique opportunities such as the specific data
structure of PtCl data. All these challenges and opportunities are
considered in Nebula’s design.

6 ON-GOINGWORK AND CONCLUSION
Motivated by the poor PtCl streaming performance on smartphones,
we present Nebula, a holistic system for high-quality mobile volu-
metric video streaming. Our central idea is to use an edge server
to judiciously transcode a PtCl stream into a regular pixel-based

video that can be efficiently transmitted to and decoded by mo-
bile devices. We further describe various optimizations such as
incremental quality upgrade, motion-to-photon delay reduction,
principled QoE-aware rate adaptation, and viewport adaptation.

We are now prototyping Nebula according to our design de-
tailed in §4, as well as conducting the IRB-approved user studies as
described earlier. We will thoroughly evaluate Nebula using PtCl
video content on real mobile devices and under diverse network
conditions. We also plan to extend Nebula to support 3D mesh
based volumetric videos.
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