
1886 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fast Uplink Bandwidth Testing for Internet Users
Zhenhua Li , Senior Member, IEEE, ACM, Xingyao Li , Xinlei Yang , Graduate Student Member, IEEE,

Xianlong Wang, Feng Qian, Senior Member, IEEE, ACM, and Yunhao Liu, Fellow, IEEE, ACM

Abstract— Access bandwidth measurement is crucial to emerg-
ing Internet applications for network-aware content delivery.
However, today’s bandwidth testing services (BTSes) are slow
and costly—the tests take a long time to run, consume a
great deal of data usage, and usually require large-scale test
server deployments. The inefficiency and high cost of BTSes
root in their methodologies that use excessive temporal/spatial
redundancies for combating noises in Internet measurement.
In particular, compared to downlink BTSes, uplink BTSes are
subject to more severe performance problems and technical
challenges. This paper presents FastUpBTS to make uplink BTS
fast and cheap while maintaining high accuracy. The key idea
is to strategically accommodate and exploit the noise rather
than repetitively and exhaustively suppress the impact of noise.
This is achieved by a novel statistical sampling framework
termed fuzzy rejection sampling. We build FastUpBTS as an
end-to-end BTS that implements fuzzy rejection sampling based
on memorization-reinforced throughput denoising, data-driven
server selection, and informed multi-homing support. Our eval-
uation shows that with only 30 test servers, FastUpBTS achieves
the same level of accuracy compared to the state-of-the-art
BTS (SpeedTest.net) that deploys ∼16,000 servers. Most
importantly, FastUpBTS makes bandwidth tests 5.4× faster and
6.8× more data-efficient.

Index Terms— Uplink bandwidth testing, internet speed test,
access bandwidth measurement.

I. INTRODUCTION

ACCESS bandwidth of Internet users commonly consti-
tutes the bottleneck of content delivery, especially for

emerging applications like AR/VR. In traditional residential
broadband networks, it is largely stable and matches ISPs’
service plans [1], [2]. In recent years, however, it becomes
less transparent and more dynamic, driven by virtual net-
work operators (VNOs), user mobility, and infrastructure
dynamics [3].

To effectively measure the access bandwidth, bandwidth
testing services (BTSes) have been widely developed and

Manuscript received 23 May 2022; revised 8 November 2022; accepted
30 December 2022; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor A. Balasubramanian. Date of publication 13 January 2023;
date of current version 18 August 2023. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2022YFB4500703, in part by the Natural Science Foundation of China
(NSFC) under Grant 62202266, and in part by Microsoft Research Asia.
(Corresponding author: Xinlei Yang.)

Zhenhua Li, Xingyao Li, Xinlei Yang, Xianlong Wang, and Yunhao Liu are
with the School of Information Science and Technology, Tsinghua University,
Beijing 100190, China (e-mail: lizhenhua1983@gmail.com; lixingyao816@
gmail.com; yangxinlei19971105@gmail.com; bugaosuni598@gmail.com;
yunhaoliu@gmail.com).

Feng Qian is with the Department of Computer Science and Engineering,
University of Minnesota–Twin Cities, Minneapolis, MN 55455 USA (e-mail:
fengqian@umn.edu).

Digital Object Identifier 10.1109/TNET.2023.3234265

deployed, serving as a core component of many applications
that conduct network-aware content delivery [4], [5]. BTSes’
data are cited in government reports, trade press [6], and ISPs’
advertisements [7]; they play a key role in ISP customers’
decision making [8]. During COVID-19, BTSes are top “home
networking tips” to support telework [9], [10]. The following
lists a few common use cases of BTSes:

• VNO has been a popular operation model that resells
network services from base carrier(s) [11], [12]. The shared
nature of VNOs and their complex interactions with the base
carriers make it challenging to ensure service qualities [13],
[14]. Many ISPs and VNOs today either build their own
BTSes [15], or recommend end users to use public BTSes.
For example, SpeedTest.net, a popular BTS, serves
more than 500M unique visitors per year [16].

• Wireless access is becoming ubiquitous, exhibiting hetero-
geneous and dynamic performance. To assist users to locate
good coverage areas, cellular carriers offer “performance
maps” [17], and several commercial products (e.g., WiFi-
Master used by 800M mobile devices [5], [18]) employ
crowd-sourced measurements to probe bandwidth.

• Emerging bandwidth-hungry apps (e.g., UHD videos and
VR/AR), together with bandwidth-fluctuating access net-
works (e.g., 5G) [19], make BTSes an integral component of
modern mobile platforms. For example, the newly released
Android 11 provides 5G apps with a bandwidth estimation
API that offers “a rough guide of the expected peak band-
width for the first hop of the given transport [20].”

Most of today’s BTSes work in three steps: (1) setup,
(2) bandwidth probing, and (3) bandwidth estimation. During
the setup process, the user client measures its latency to a num-
ber of candidate test servers and selects one or more servers
with low latency. Then, it probes the available bandwidth by
downloading and uploading large files from and to the test
server(s), and records the measured throughput as samples.
Finally, it estimates the overall downlink/uplink bandwidth.

The major difficulty of BTSes is to deal with noises of
Internet measurements incurred by congestion control, link
sharing, etc. Spatially, the noise inflates as the distance (the
routing hop count) increases between the user client and test
server. Temporally, the throughput samples may be constantly
fluctuating over time—the shorter the test duration is, the
severer impact on throughput samples the noise can induce.
An effective BTS needs to accurately and efficiently measure
the access bandwidth from noisy throughput samples.

Today’s BTSes are slow and costly. For example, a
5G bandwidth test using SpeedTest.net for 1.15 Gbps

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7286-122X
https://orcid.org/0000-0003-4245-680X
https://orcid.org/0000-0002-7430-4248

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1887

downlink + 248 Mbps uplink takes 15 + 15 seconds of
time and incurs 1.94 + 0.41 GB of data usage on end users.
To deploy an effective BTS, hundreds to thousands of test
servers are typically needed. Such a level of cost (both at
the client and server sides) and long test duration prevent
BTSes from being a foundational, ubiquitous Internet service
for high-speed, metered networks. Based on our measurements
and reverse engineering of a variety of commercial BTSes
(Section II), we find that the inefficiency and cost of these
BTSes fundamentally root in their methodology of relying on
temporal and/or spatial redundancy to deal with noises:

• Temporally, most BTSes rely on a flooding-based band-
width probing approach, which simply injects an excessive
number of packets to ensure that the bottleneck link is
saturated by test data rather than noise data. Also, their test
processes often intentionally last for a long time to ensure
the convergence of the probing algorithm.

• Spatially, many BTSes deploy dense, redundant test servers
close to the probing client, in order to avoid “long-distance”
noises. For example, FAST.com and SpeedTest.net deploy
∼3,000 and ∼16,000 geo-distributed servers, respectively,
while WiFiMaster controversially exploits a large Internet
content provider’s CDN server pool.

In addition, we note that quite a few BTSes (e.g.,
Xfinity [21] and ThinkBroadBand [22]) do not measure the
uplink bandwidth in a symmetric manner (with respect to
the downlink bandwidth test logic), oftentimes leading to
rather poor accuracies. On the other hand, some BTSes (e.g.,
SpeedOf [23] and ThinkBroadBand [22]) use the downlink
bandwidth test result to guide the uplink test process in a
simple way, in the hopes of making the latter more efficient
and accurate.

In the preliminary work [24], we developed the FastBTS
system for efficient and accurate downlink bandwidth testing.
Our key idea is to accommodate and exploit the noise through
a novel statistical sampling framework, which eliminates the
need for long test duration and exhaustive resource usage
for suppressing the impact of noise. Our insight is that the
workflow of BTS can be modeled as a process of acceptance-
rejection sampling [25] (or rejection sampling for short).
During a test, a sequence of throughput samples are generated
by bandwidth probing and exhibit a measured distribution
P (x), where x denotes the throughput value of a sample. They
are filtered by the bandwidth estimation algorithm, in the form
of an acceptance-rejection function (ARF), which retains the
accepted samples and discards the rejected samples to model
the target distribution T (x) for calculating the final test result.

The key challenge of FastBTS is that T (x) is unknown
beforehand. Hence, we cannot apply the traditional rejection
sampling algorithm that assumes a T (x) and uses it as input.
In practice, our extensive measurement results show that, while
the noise samples are scattered across a wide throughput
interval, the true samples tend to concentrate within a narrow
throughput interval (termed as a crucial interval). Therefore,
one can reasonably model T (x) using the crucial interval,
as long as T (x) is persistently covered by P (x). We name
the above-described technique fuzzy rejection sampling, which

Fig. 1. Architectural overview of FastUpBTS. The arrows show the workflow
of a bandwidth test in FastUpBTS.

is implemented in FastBTS through an Elastic Bandwidth
Probing (EBP) mechanism generating high-quality P (x) sam-
ples and a Crucial Interval Sampling (CIS) algorithm acting
as the ARF. Also, the Data-driven Server Selection (DSS)
and Adaptive Multi-Homing (AMH) mechanisms are used
to establish multiple parallel connections with different test
servers if necessary, especially when the client-side access
bandwidth exceeds the capability of each test server.

In this paper, when attempting to reuse fuzzy rejection
sampling for uplink bandwidth testing, we encounter two-fold
additional challenges. First, EBP cannot be reused in uplink
bandwidth testing because we cannot alter the user client (e.g.,
the web browser), so the generated throughput samples may
bear undesirable quality (e.g., being subject to more severe
fluctuations) and the bandwidth probing process could take
much longer time to converge. Second, uplink bandwidth is
typically much lower than downlink bandwidth, making the
crucial interval of throughput samples less evident, i.e., the
accepted samples do not manifest sufficient concentration.
On the other hand, there are certain opportunities facilitating
our implementation of uplink bandwidth testing, e.g., uplink
testing always follows downlink testing whose result can
provide helpful knowledge to the former.

Given the challenges and opportunities, we customize the
uplink bandwidth test logic through two-fold innovations
(Section III). First, we advance the original CIS mechanism
by accumulatively reinforcing the significance of accepted
samples in every period, so that the crucial interval can become
evident in considerably less time; the resulting mechanism is
dubbed Memorization Reinforced CIS or MR-CIS for short.
Second, we leverage the downlink test result and the access
media information to estimate how many servers are really
needed for uplink testing, so that the original time-consuming
AMH mechanism is upgraded into the efficient IMH (Informed
Multi-Homing) mechanism. The high-level architecture of the
new system, FastUpBTS, is depicted in Figure 1.

We have fully implemented FastUpBTS in a web-based
manner for compatibility and usability considerations.
We deploy it under diverse network scenarios (including
Microsoft OpenNetLab [26] which offers us a variety of
Internet edge nodes), using 30 geo-distributed budget cloud
servers as the backend (Section IV). We also implement seven
representative commercial BTSes on this testbed to ensure
their apple-to-apple performance/overhead comparisons with

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

1888 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

FastUpBTS. Our key evaluation results are summarized as
follows:

• On the same testbed, FastUpBTS yields 3%–30% higher
average accuracy than the other BTSes, while incurring
3.8–10.8× shorter test duration and 3.8–12× less data
usage. At the same time, FastUpBTS flows incur trivial
(<1%) interference to concurrent non-BTS network flows.

• Employing only 30 test servers, FastUpBTS achieves com-
parable accuracy compared with the production system of
SpeedTest.net with ∼16,000 test servers, while incurring
5.4× shorter test duration and 6.8× less data usage.

To benefit the community as well as facilitate others’ repeat-
ing and improving our work, we have released all the source
code involved in this work at https://FastUpBTS.github.io.

II. UNDERSTANDING STATE-OF-THE-ART BTSES

This section starts with our basic methodology of measuring
a BTS (Section II-A), followed by our reverse engineering
efforts towards understanding the uplink bandwidth test logic
of mainstream BTSes (Section II-B). Then, we brief the
measurement process and results (Section II-C), and describe
in detail the cases of representative BTSes (Section II-D).

A. Methodology

We measure a BTS using the following three key metrics:
(1) Test Accuracy measures how well the result (r) reported by
a BTS matches the ground-truth access bandwidth (R). Then
we calculate the test accuracy as r

R . In practice, we observe
that all BTSes (including FastUpBTS) tend to underestimate
the bottleneck bandwidth due to factors like TCP slow start
and congestion control, so the accuracy values are always
smaller than 1.0. (2) Test Duration measures the time needed
to perform a bandwidth test—from starting a bandwidth test
to returning the test result. (3) Data Usage measures the
consumed network traffic for a test. This metric is of particular
importance to metered LTE and 5G links. Since we concentrate
on uplink bandwidth testing in this work, the three metrics are
all calculated with regard to the uplink(-related) test process.

Obtaining ground truth or baseline reference band-
width. It is ideal for us to measure the test accuracy with
ground truth data. However, it is challenging to know all
the ground truth bandwidths for massive measurements under
heterogeneous environments. In this work, we use the best
possible estimations for different types of access links:

• Wired LANs for in-lab experiments. We regard the (known)
physical link bandwidth, with the impact of (our injected)
cross traffic properly considered, as the ground truth.

• Commercial residential broadband and cloud networks. We
collect the bandwidth claimed by the ISPs or cloud service
providers from the service contract, denoted as TC . We then
verify TC by conducting long-lived bulk data transfers
(average value denoted as TB) using iPerf [27] (a classic
tool for active network measurement) before and after a
bandwidth test. In 93% of our experiments, TB and TC

match, with their difference being less than 5%; thus,
we regard TC as the baseline reference bandwidth with high

confidence. Otherwise, we choose to use TB as the baseline
reference since TB is more credible in this case.

• Cellular networks (LTE and 5G). Due to a lack of TC

and the high dynamics of cellular links and devices (in
our controlled experiments the cellular devices are tested
in both stationary and mobile scenarios), we leverage the
results provided by SpeedTest.net as a baseline reference.
Being the state-of-the-art BTS that owns a large number
of (∼16,000) test servers across the globe, SpeedTest.net’s
results are usually more accurate than others’ and thus are
widely considered as a close approximation to the ground-
truth bandwidth [28], [29], [30].

It is worth noting that UDP-based (in particular QUIC)
measurements can also be used to validate the accuracy [31],
[32]. Recently, Swiftest [33] even utilizes the data-driven
UDP protocol to test mobile access bandwidth within one
second or so. In this work, we concentrate on TCP-based
measurements mostly for compatibility concerns, especially
to meet the requirements of most web apps at the moment.

B. Reverse Engineering Mainstream BTSes

In this study we wish to unravel the bandwidth test
logic of 21 state-of-the-art BTSes, including 20 widely-
used web-based BTSes and one Android 11 uplink BTS
API: getLinkUpstreamBandwidthKbps.1 We run the
21 BTSes on three different PCs and four different smart-
phones listed in Table I (WiFiMaster and the Android API are
only run on smartphones). To understand the implementation
of these BTSes, we jointly analyze: (1) the network traffic
(recorded during each test), (2) the client-side code, and
(3) vendors’ documentation. A typical analysis workflow is
as follows.

First, we use Wireshark [49] (a popular network protocol
analyzer) to capture and examine the packet-level network
traffic, in order to reveal which server(s) the client interacts
with during the test, as well as their interaction durations.
We then inspect the captured HTTP(S) transactions to interpret
the client’s interactions with the server(s) such as server
selection and file transfer. We also review the client-side code
(typically written in JavaScript) of several BTSes such as
Xfinity [50], LibreSpeed [51], and M-Lab NDT [52]. However,
this attempt may not always succeed due to code obfuscation
used by some BTSes like SpeedTest. In this case, we perform
specialized benchmarks with controlled experiments where
the peak bandwidth is strategically tuned, and meanwhile use
the Chrome developer tool to monitor the entire test process
in debug mode. Thereby, we can trigger the various latent,
rare or extreme behaviors of a BTS, which effectively expose
its internal (and oftentimes invisible) working procedures.

1The 20 web-based BTSes are ATTtest [15], BandwidthPlace (BWP) [34],
CenturyLink [35], Cox [36], DSLReports [37], FAST [38], LibreSpeed [39],
M-Lab NDT [40], NYSbroadband [41], Optimum [42], SFtest [43],
SpeakEasy [44], Spectrum [45], SpeedOf [23], SpeedTest [46], ThinkBroad-
band (TBB) [22], Verizon [47], Xfinity [21], XYZtest [48], and WiFiMas-
ter [5]. They are selected based on Alexa page ranks (regrettably retired
on May 1, 2022) and Google page ranks (i.e., by querying the keywords
“bandwidth test OR speed test” with Google Search and selecting the
high-rank BTSes in the first two pages of search results).

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1889

TABLE I

CLIENT DEVICES USED FOR REVERSE ENGINEERING THE BANDWIDTH
TEST LOGIC OF 19 STATE-OF-THE-ART BTSES

In addition, some BTSes (e.g., SpeedOf, BWP, FAST, and
SpeedTest) have provided official documentations for their
bandwidth test logic [34], [53], [54], [55], which turn out to
be very helpful (although not always up-to-date) references.
With all the above efforts, we are able to “reverse engineer”
the implementations of all these BTSes.

Our analysis shows that a complete bandwidth test in these
BTSes (except the Android API) is typically done in five
phases: (1) setup, (2) downlink bandwidth probing, (3) down-
link bandwidth estimation, (4) uplink bandwidth probing, and
(5) uplink bandwidth estimation.

In the setup phase, the BTS sends a list of candidate servers
(based on the client’s IP address or geo-location) to the client;
for most BTSes such as BWP, Xfinity, LibreSpeed, FAST, and
SpeedTest, the client then PINGs each candidate server over
HTTPS. In detail, the client sends an HTTPS GET() request
to each candidate server for fetching a small (typically <1 KB)
piece of data, e.g., an empty HTML or JSON file. Once the
client gets a corresponding response from the server, the PING
latency is measured by the round-trip time from when the
request is sent to when the response is received.

Next, based on the servers’ PING latencies (if available) or
geo-locations, the client selects one or more nearby candidate
servers as the test servers. Afterwards, the BTS performs
download and upload bandwidth tests sequentially2 by per-
forming file transfer(s) between test servers and the client
(bandwidth probing phase), and then processing the collected
throughput statistics to estimate the client’s bandwidth (band-
width estimation phase).

Of course, we will pay special attention to the uplink test
phases (4)+(5) and the uplink-related setup phase (1) in the
remainder of this paper. For example, when calculating the
“test duration” metric, we sum up the durations of phases
(1)+(4)+(5); the calculation of data usage is alike.

C. Measurement Process and Results

We select 8 (out of 21) representative BTSes for more
in-depth characterizations, as listed in Table II. They well
cover different design paradigms of the remaining 13 ones,
i.e., these 8 BTSes were narrowed down out of 21 based
on the key bandwidth test logic, rather than popularity or

2All the 20 web-based BTSes involved in our study peform download band-
width tests before upload bandwidth tests, probably because common users
are usually more concerned about their downlink bandwidths. Nevertheless,
it is technically possible for a BTS to conduct upload bandwidth tests first,
although we do not observe such cases in the measurements.

a random sample. Concretely, 7 BTSes (including ATTtest,
CenturyLink, Cox, NYSbroadband, Optimum, SpeakEasy, and
Spectrum) directly adopt SpeedTest’s bandwidth test interface;
the bandwidth test logic of Verizon and XYZtest is similar to
that of SpeedTest. The bandwidth test logic of some BTSes
is very similar. Specifically, the test process of WiFiMaster is
almost the same as that of TBB, which delivers fixed-sized
files for a certain period of time and then calculates the
average throughput. M-Lab NDT works similarly as SpeedOf
does: both of them sequentially transfer files with exponen-
tially growing sizes (8 KB→16 MB for M-Lab NDT and
128 KB→128 MB for SpeedOf) for bandwidth probing, and
calculate the overall average throughput (M-Lab NDT) or
the last-file average throughput (SpeedOf) as the test result.
DSLReports and SFtest quite resemble Xfinity by performing
parallel file transfers to saturate the client’s bandwidth.

Profiling the Performance. We build a geo-distributed het-
erogeneous testbed to comprehensively profile 7 representative
BTSes, except the Android API (we will discuss separately in
Section II-D). Our testbed is deployed on 10 Internet edge
nodes offered by Microsoft OpenNetLab, consisting of one
LTE node, one WiFi node, and eight wired-ADSL nodes. All
these nodes are common desktop PCs contributed and shared
by tens of organizations, with the incoming bandwidth ranging
from 20 to 800 Mbps and the outgoing bandwidth ranging
from 10 to 600 Mbps. Specially, the LTE node is a desktop
PC connected to an LTE router, with ∼50 Mbps of downlink
bandwidth and ∼15 Mbps of uplink bandwidth.

To avoid or minimize the impact of cross traffic among these
shared nodes, we informed the administrator of OpenNetLab
of the specific time period (usually lasting for a couple of
hours) for our bandwidth tests in advance. The administrator
then selected 10+ nodes with the least network overhead or the
fewest users, and queried other users on these nodes whether
they could evade our (bandwidth test) usage period. Only when
all the other users on a node replied with their consents, the
node was finally assigned to us.

For ease of presentation in the remainder of the paper, we
denote one test group as using one edge client to run back-
to-back (downlink and) uplink bandwidth tests across all the
7 BTSes in a random order. We perform in one day 300 groups
of tests, i.e., 10 edge clients × 3 different time-of-day (0:00,
8:00, and 16:00) × 10 repetitions.

Unravelling the Server Pool. Besides understanding the
bandwidth test logic and performance of representative BTSes,
we wish to demystify the server pool of each BTS, in particular
the scale and distribution of test servers. This goal, however,
cannot be reached with only the 10 edge nodes aforemen-
tioned, as most servers would be “hidden” due to the lack
of nearby clients. To address this in a cost-effective manner,
we take advantage of the globally-distributed, easy-to-deploy
virtual machines (VMs) from multiple public cloud services
providers (abbreviated as CSPs, including Azure, AWS, Ali
Cloud, Digital Ocean, Vultr, and Tencent Cloud) as flexible
client hosts, and monitor the setup phases regarding the same
BTS to unravel its server pool as much as possible.

Specifically for a specific BTS, we begin with deploying a
small number of VMs as the client hosts, and then gradually

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

1890 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

TABLE II

A BRIEF SUMMARY OF THE EIGHT REPRESENTATIVE BTSES IN TERMS OF UPLINK BANDWIDTH TESTING. THE PERFORMANCE RESULTS OF THE
SEVEN WEB-BASED BTSES ARE ACQUIRED ON THE MICROSOFT OPENNETLAB-BASED TESTBED, WHILE THOSE

OF THE ANDROID API ARE GOT ON THE TWO 5G PHONES LISTED IN TABLE I

add new VMs while keeping them geographically dispersed.
After each VM starts the bandwidth test, we merely monitor
the setup phase to record the information of candidate test
servers – recall that in the setup phase, a client will be
assigned a list of nearby candidate test servers from the
BTS’s server pool based on its IP address and geo-location
(refer to Section II-B). As the deployed VMs become denser,
we find that the total number of candidate test servers grows
accordingly at first, then increases more and more slowly, and
finally converges.

In particular, when the number of VMs exceeds 100,
four of the six representative BTSes’ candidate server sets
stay unchanged, indicating that their server pools have been
mostly, if not entirely, identified. For example, we identify that
SpeedOf’s server pool consists of 129 servers, quite close to
the 136 servers officially claimed by SpeedOf [56]. On the
other hand, for FAST and SpeedTest, using ∼100 VMs can
hardly uncover their entire server pools, but we expect that
their very large server pools (whose scales are claimed to be
around 3K and 16K respectively) can usually guarantee the
closeness between each VM and the selected test server.

Result Summary. We summarize the major results in
Table II, which reveal the landscape of today’s uplink BTSes.
We discover that all but one (i.e., the Android API) of
the BTSes adopt flooding-based approaches to combat the
test noises from a temporal perspective, thereby leading to
enormous data usage. Meanwhile, they differ in many aspects:
(1) bandwidth probing mechanism, (2) bandwidth estimation
algorithm, (3) connection management strategy, (4) server
selection policy, and (5) server pool size. Most notably,
compared to downlink BTSes, uplink BTSes are subject to
more severe performance problems, particularly in terms of
accuracy, though some of them (e.g., Speedof and TBB) have
utilized the downlink test result to optimize the uplink test
process.

D. Case Studies

Below we present in detail our case studies of the eight
representative BTSes as listed in Table II.

ThinkBroadBand (TBB) [22] measures a client’s down-
link bandwidth before conducting the uplink bandwidth test.
Concretely, in the setup phase, TBB selects a test server
with the lowest latency to the client among its server pool.
Then, it performs an eight-second downlink bandwidth test by
sequentially delivering 20-MB files to the client. Afterwards,

it calculates the average throughput (i.e., data transfer rate)
during the whole test as the estimated bandwidth [24].

When downlink bandwidth test is accomplished, TBB
moves on to uplink bandwidth test. In the uplink bandwidth
probing phase, the client first performs a pre-test by generating
and uploading a random file to the test server, whose size
is proportional to the measured downlink bandwidth (say
Bdown). Quantitatively, the file size equals Bdown× t1, where
t1 is nearly 150 ms according to our measurement. Then,
TBB uses the average upload throughput during the pre-test
as a rough estimation of the uplink bandwidth (say B̂up),
and further tunes the random file size as B̂up × t2, where
t2 is around 100 ms. After that, TBB constantly generates
and uploads a sequence of random files with the tuned size
for eight seconds, and the overall average throughput is taken
as the final uplink bandwidth test result. Our measurement
shows that the accuracy of TBB is merely 0.59, because using
the average throughput for bandwidth estimation cannot rule
out the impact of TCP slow start during file transfer.

SpeedOf [23]. Similar to TBB, SpeedOf also leverages
the downlink bandwidth test result to guide uplink bandwidth
testing. Specifically, for a downlink bandwidth test, SpeedOf
sequentially retrieves files with exponentially growing sizes
from 128 KB to up to 128 MB. The test process stops when all
file transfers complete or the current file transfer takes longer
than eight seconds to finish. The average download throughput
of the last file is reported as the downlink bandwidth test result.

In comparison, the initial file used for SpeedOf’s uplink
bandwidth test is usually not 128 KB in size; instead, the file
size is set as 2i MB when the measured downlink bandwidth
lies between 2i+3 and 2i+4 Mbps (i is a non-negative integer),
i.e., between 2i and 2i+1 MBps. Suppose a client’s downlink
bandwidth test result is 50 Mbps, which lies between 25 and
26 Mbps; then i = 2, and SpeedOf starts with a 4-MB file
transfer in the hopes of rapidly saturating the uplink. On aver-
age, SpeedOf also bears unsatisfactory test accuracy (0.77).
Worse still, in the presence of a slow network connection,
the test duration of SpeedOf can be extremely long—up to
214 seconds in our measurement.

BandwidthPlace (BWP) [34]. The uplink bandwidth
test process of BWP generally resembles that of
SpeedOf—during the 13-second test, BWP constantly
uploads files with exponentially growing sizes (which start
from 8 MB). The major distinction lies in that instead of
taking the average upload throughput of the last file as the

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1891

Fig. 2. Uplink test logic of FAST.

test result (SpeedOf’s bandwidth test logic), BWP picks the
file transfer session with the highest average throughput to
generate the test result. As shown in Table II, BWP still bears
low test accuracy (0.74), because even the fastest file transfer
session is subject to the impact of TCP slow start when we
average its throughput samples to generate the test result.

Xfinity [21] establishes four parallel HTTPS connections
between a client and the latency-wise nearest test server for
uplink bandwidth testing. Along each connection, Xfinity con-
tinuously generates and transfers a sequence of data chunks.
The size of data chunks is initially set as 50 KB, and then
adaptively adjusted according to the real-time upload situation.
In detail, Xfinity keeps monitoring how many data chunks have
been completely uploaded (along all the connections) during
the last 200-ms time interval. If more than four data chunks
have been completely uploaded within the time interval, Xfin-
ity deems that the current chunk size is too small to saturate the
client’s upload bandwidth, and thus increases the chunk size
by 10% (e.g., from 50 KB to 55 KB) with the upper bound
of 10 MB. Otherwise, the chunk size remains unchanged.

The above test process lasts 12 seconds, during which
Xfinity calculates an overall throughput sample across all
connections every 100 ms. After 12 seconds, the client’s
uplink bandwidth is estimated as the average of the throughput
samples collected in the last quarter of the test process, i.e.,
between 9 and 12 seconds. Table II indicates that Xfinity also
yields a low accuracy (0.66). This is mainly because directly
averaging the collected throughput samples in the last quarter
as the bandwidth estimation still cannot effectively rule out
the test noises due to network congestion, link sharing, etc.

LibreSpeed [39] is a popular open-source BTS with 8,600+
stars on Github. Similar to most BTSes, LibreSpeed selects a
test server with the lowest latency to the client in the setup
phase. Then, LibreSpeed progressively establishes three paral-
lel HTTPS connections at the time of 0, 0.3, and 0.6 second,
respectively. Along each connection, LibreSpeed sequentially
generates and uploads 20-MB files to the test server.

LibreSpeed employs a unique early termination mechanism
that adaptively shortens the test duration according to the
client’s real-time throughput. Specifically, LibreSpeed initial-
izes the test duration as 15 seconds. Then, starting from the
3rd second, LibreSpeed calculates the client’s current upload
throughput (denoted as Vc) every 200 ms, and reduces the test

duration accordingly by ΔT = α ·Vc. The parameter α = 1
160

is a constant factor that positively correlates Vc (in Mbps)
with ΔT (in unit of seconds). That is to say, a higher upload
throughput leads to a larger reduction in the test duration.

We note that ΔT has an upper bound of 0.4 second. Hence,
when Vc stays above 64 Mbps (i.e., α·Vc > 0.4), every 200 ms
LibreSpeed reduces the test duration by 0.4 second, and then
the total test duration is shortened from 15 to only 7 seconds.
Finally, LibreSpeed averages all the collected throughput sam-
ples as the client’s uplink bandwidth estimation.

As shown in Table II, benefiting from the early termination
mechanism, LibreSpeed considerably saves the data usage
(118 Mbps) compared with other web-based BTSes. However,
this mechanism also induces inferior test accuracy (0.62). This
is because a short test duration will undoubtedly magnify the
impact of noises brought by TCP slow start, which usually
takes a relatively long time (e.g., ∼4 seconds for a typical 5G
bandwidth test) for high-speed networks [33].

FAST [38] is an advanced BTS with a pool of about 3,000
test servers. It employs a two-step server selection process: the
client first picks five nearby servers based on its IP address and
geo-location, and then PINGs these five candidates to select
the latency-wise nearest one as the test server. In the uplink
bandwidth probing phase, the client starts with uploading a
25-MB file over a single HTTPS connection to the test server.
When the file transfer completes, the client repeatedly uploads
another 25-MB file until certain termination conditions are
satisfied, which are elaborated below.

FAST estimates the uplink bandwidth as follows. As shown
in Figure 2, it collects a throughput sample every 200 ms,
and maintains a two-second window consisting of 10 most
recent samples. After five seconds, FAST checks whether the
in-window throughput samples are stable: Smax − Smin ≤
3% · Savg , where Smax, Smin, and Savg correspond to the
maximum, minimum, and average value across all samples in
the window, respectively. If the above inequality holds, FAST
terminates the test and returns Savg . Otherwise, the test will
continue until reaching a time limit of 30 seconds; at that
time, the last two-second window’s Savg will be returned to
the user.

Unfortunately, our results show that the accuracy of FAST is
still unsatisfactory (0.84). We ascribe this to FAST’s window-
based mechanism for early generation of the test result,
which is vulnerable to throughput fluctuations. Under unstable
network conditions, FAST can only use throughput samples in
the last two seconds (rather than the entire 30-second samples)
to roughly calculate the final test result.

SpeedTest [46] is generally considered the most advanced
industrial BTS [28], [29], [30]. It has deployed a huge pool
of ∼16,000 test servers as of May 2022. Similar to FAST,
it employs a two-step server selection process: first identifying
10 candidate servers based on the client’s IP address, and
then selecting the latency-wise nearest. It also progressively
increases the concurrency level: it begins with four parallel
connections for quickly saturating the available bandwidth,
and establishes a new connection when the throughput reaches
35 Mbps. It uses a fixed file size of 25 MB and a fixed duration
of 15 seconds.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

1892 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 3. Uplink test logic of SpeedTest.

SpeedTest’s bandwidth estimation algorithm is quite dif-
ferent from FAST’s. During the uplink bandwidth probing
phase, it collects a throughput sample every 100 ms. Since
the test duration is fixed to 15 seconds, all the 150 samples
are used to construct 20 slices, each covering the same traffic
volume, illustrated as the area under the throughput curve in
Figure 3. Then, 10 slices with the lowest average throughput
are discarded. This leaves 10 slices remaining, whose average
throughput is returned as the final test result. This method
may help mitigate the impact of throughput fluctuations, but
the two fixed thresholds for noise filtering could be deficient
under diverse network conditions.

Overall, SpeedTest exhibits the highest accuracy (0.88)
among the measured BTSes. A key contributing factor is its
largest server pool which can enable most bandwidth testing
approaches (even when they are simplistic and naive) to yield
high accuracy. In fact, when the server pool is large enough,
every test client can be assigned with a very close test server,
thereby avoiding or largely reducing the “long-distance” noises
(i.e., effective spatial denoising) during bandwidth testing.

Android API [4], [57]. To cater to the needs of bandwidth
estimation for bandwidth-hungry apps (e.g., UHD videos and
VR/AR) over 5G, Android 11 offers a “Bandwidth Estimator”
API to “make it easier to check bandwidth for uploading
content [4]”, i.e., getLinkUpstreamBandwidthKbps.
It statically calculates the access bandwidth by “taking into
account link parameters (including radio technology, allocated
channels, and so forth) [20]”. It uses a pre-defined dictionary
(KEY_BANDWIDTH_STRING_ARRAY) to map device hard-
ware information to certain bandwidth values. For example,
if the end-user’s device is connected to the new-radio non-
standalone mmWave 5G network, it searches the dictionary
which records NR_NSA_MMWAVE:145000,60000, indicat-
ing that the downlink bandwidth is 145,000 Kbps and the
uplink bandwidth is 60,000 Kbps. We test the API’s per-
formance in a similar manner as introduced in Section II-C
with the 5G phones in Table I. The results show that the
Android API bears extremely poor accuracy (0.09) in realistic
scenarios.

III. DESIGN OF FASTUPBTS

At a high level, estimating the client’s access bandwidth
based on a sequence of collected throughput samples is
essentially an outlier removal problem that appears to be

a well studied topic in statistics and data mining. But to
our surprise, existing signal de-noising or anomaly detection
techniques [58], [59], [60] can hardly be applied to our case, as
they generally require quantitative characteristics of the out-
liers (e.g., numerical thresholds, frequency-domain features,
and pre-defined models), or are too heavyweight to carry out.
In our case, the outliers stem from various complex sources
where it is difficult to identify common characteristics. Also,
our desired web-based access bandwidth testing prohibits any
heavyweight implementations.

On the other hand, as mentioned in Section I, we notice that
the classic approach of acceptance-rejection sampling [25] (or
rejection sampling for short) seem to be a promising baseline
solution due to its generic and lightweight nature. As a
result, in this paper we propose and develop FastUpBTS by
basing on and heavily customizing the framework of rejection
sampling. FastUpBTS strategically accommodates and exploits
noises (instead of suppressing them) to significantly reduce
the resource footprint and accelerate the test process, while
retaining high test accuracy. Its key technique is fuzzy rejection
sampling which automatically identifies true samples that
represent the target distribution and filters out false samples
due to measurement noises, without apriori knowledge of the
target distribution. Figure 1 shows its main components and
the basic workflow of an uplink bandwidth test.
• Memorization Reinforced Crucial Interval Sampling (MR-

CIS) implements the acceptance rejection function of fuzzy
rejection sampling for uplink bandwidth testing. In Fast-
BTS [24], the CIS mechanism searches for a dense and
narrow interval that covers the majority of the desirable
samples, and uses computational geometry to drastically
reduce the searching complexity. Since uplink bandwidth
is typically much lower than downlink bandwidth, MR-CIS
advances CIS by accumulatively reinforcing the significance
of accepted samples in every period, so that the crucial
interval can become evident in considerably less time.

• Data-driven Server Selection (DSS) selects the server(s)
with the highest bandwidth estimation(s) through a data-
driven model. We show that a simple model can significantly
improve server selection results compared to the de-facto
approach that ranks servers purely by round-trip time.

• Informed Multi-Homing (IMH) is important for saturating
the access link when the “last-mile” is not the bottleneck,
e.g., in some cases of 5G [61]. In FastBTS, Adaptive Multi-
Homing (AMH) is adopted to progressively establish multi-
ple parallel connections with different test servers, which is
oftentimes time-consuming due to the gradual exploration.
Since in mainstream BTSes, uplink testing always follows
downlink testing, IMH leverages the downlink bandwidth
test result and the access media information to estimate in
one shot how many servers are really needed for uplink
testing, so that the gradual exploration process of AMH can
be almost fully avoided in FastUpBTS.

A. Memorization Reinforced CIS (MR-CIS)

CIS is designed based on the key observation: while noise
samples are scattered across a wide throughput interval, the

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1893

Fig. 4. Common scenarios where the true samples fall in a crucial interval during an uplink bandwidth test.

desirable samples tend to concentrate within a narrow interval,
referred to as the crucial interval. As shown in Figure 4,
in each subfigure, although the crucial interval is narrow, it can
cover the vast majority of the desirable samples. Thus, while
the target distribution T (x) is unknown, we can approximate
T (x) with the crucial interval. Also, as more noise samples
accumulate, the test accuracy would typically increase as
randomly scattered noise samples help better “contrast” the
crucial interval, leading to its improved approximation.

Crucial Interval Algorithm. Based on the above insights,
our designed bandwidth estimation approach for FastUpBTS
aims at finding this crucial interval ([Vx, Vy]) that has both
a high sample density and a large sample size. Assuming
there are N throughput samples ranging from Vmin to Vmax,
our aim is formulated as maximizing the product of den-
sity and size. We denote the size as K(Vx, Vy), i.e., the
number of samples that fall into [Vx, Vy]. The density can
be calculated as the ratio between K(Vx, Vy) and N ′ =
N(Vy − Vx)/(Vmax − Vmin), where N ′ is the “baseline”
corresponding to the number of samples falling into [Vx, Vy]
if all N samples are uniformly distributed in [Vmin, Vmax].
To prevent a pathological case where the density is too high,
we enforce a lower bound of the interval: Vy−Vx should be at
least Lmin, which is empirically set to (Vmax−Vmin)/(N−1).
Given the above, the objective function to be maximized is:

F (Vx, Vy) = Density × Size = C · K2(Vx, Vy)
Vy − Vx

, (1)

where C = (Vmax−Vmin)/N is a constant. Once the optimal
[Vx, Vy] is calculated, we can derive the bandwidth estimation
by averaging all the samples falling into this interval.

The crucial interval is computed as the flooding-based
bandwidth probing is in progress, which serves as the
acceptance-rejection function (ARF) of rejection sampling.
When a new sample is available, the server computes a
crucial interval by maximizing Equation (1). It thus produces
a series of intervals [Vx3, Vy3], [Vx4, Vy4], · · · where [Vxi, Vyi]
corresponds to the interval generated when the i-th sample is
available.

Searching Crucial Interval with Convex Hull. We
now consider how to actually solve the maximization prob-
lem in Equation (1). To enhance the readability, we use L
to denote Vy − Vx, use K to denote K(Vx, Vy), and let
the maximum value of F (Vx, Vy) be Fmax, which lies in

(0, C·N2

Lmin
]. Clearly, a naïve exhaustive search takes O(N2)

time, which usually lies between 10 to 25 ms in practice with
a relatively small N (ranging from 100 to 500). Nonetheless,
when very fine-grained throughput samples are desired in
special scenarios, N can be quite large (e.g., 5,000–10,000)
and then the exhaustive search would last quite long (e.g.,
1.2–5.4 seconds).

Our key result is that this can be done much more efficiently
in O(N log N) by strategically searching on a convex hull
dynamically constructed from the samples. Our high-level
approach is to perform a binary search for Fmax. The initial
midpoint is set to � C·N2

2·Lmin
�. In each binary search iteration,

we examine whether the inequality C·K2

L −m ≥ 0 holds for
any interval(s), where 0 < m ≤ Fmax is the current midpoint.
Based on the result, we adjust the midpoint and continue with
the next iteration. Please refer to Section 3.1 in our preliminary
work [24] about how each iteration is performed exactly.

Fast Result Generation. CIS selects a group of samples
that well fit T (x) as soon as possible while ensuring data reli-
ability. Given two intervals [Vxi, Vyi] and [Vxj , Vyj], we regard
their similarity as the Jaccard Coefficient [62]:

Si,j =
([Vxi, Vyi] ∩ [Vxj , Vyj])
([Vxi, Vyi] ∪ [Vxj , Vyj])

. (2)

CIS then keeps track of the similarity values of consecutive
interval pairs i.e., S3,4, S4,5, . . . If the test result stabilizes, the
consecutive interval pairs’ similarity value will keep growing
from a certain value β, satisfying β ≤ Si,i+1 ≤ · · · ≤
Si+k,i+k+1 ≤ 1. If the above sequence is observed, CIS deter-
mines that the result has stabilized and reports the bottleneck
bandwidth as the average value of the throughput samples
belonging to the most recent interval.

The parameters β and k pose a tradeoff between accuracy
and cost in terms of test duration and data traffic. Specifically,
increasing β and k can yield a higher test accuracy while
incurring a longer test duration and more data usage. Currently,
we empirically set β = 0.9 and k = 2, which are found to
well balance the tradeoff between test duration and accuracy.
Nevertheless, when dealing with those relatively rare cases that
are not covered by this paper, BTS providers are recommended
to do pre-tests in order to find the suitable parameter settings
before putting CIS into actual use.

Memorization Reinforcement. In this work, when
attempting to reuse CIS (including Fast Result Generation)

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

1894 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 5. Undesirable scenarios where the accepted samples within the crucial interval do not manifest sufficient concentration.

for uplink bandwidth testing, we encounter two-fold chal-
lenges.

• First, the Elastic Bandwidth Probing (EBP) mechanism in
FastBTS cannot be reused in FastUpBTS because we cannot
alter the user client (e.g., the web browser). In comparison,
we can customize the server system with our specially
developed congestion control algorithm in FastBTS, which
is transparent to the user client. Consequently, the generated
P (x) throughput samples may well bear undesirable quality,
and the conventional flooding-based bandwidth probing
process could take much longer time to converge.

• Second, for an Internet user’s access link, its uplink band-
width is typically much lower than its downlink bandwidth,
making the crucial interval of throughput samples less
evident, i.e., the accepted samples do not manifest sufficient
concentration, as demonstrated in Figure 5. As a matter of
fact, this challenge aggravates the first one, thus causing the
uplink bandwidth test time to get even longer.

To address these challenges, we devise the novel MR-CIS
mechanism geared for FastUpBTS, which advances CIS by
accumulatively reinforcing the significance of accepted sam-
ples in every period, so that the crucial interval can become
evident in considerably less time. The effectiveness of this
optimization heuristic stems from intuitive observations—if a
throughput sample appears in most crucial intervals during
the whole test process (each sampling period corresponds to
a crucial interval), it is more likely to be accepted to generate
the final bandwidth test result.

Concretely, on the basis of CIS, we additionally maintain
an array S = [s1, s2, · · · , sk], where sk denotes the current
significance value of the k-th throughput sample; all the
significance values in S are initialized as zero in the beginning.
Every time a new throughput sample is generated, we set its
significance value as 1.0. In the i-th sampling period, we take
each sample’s significance into consideration when seeking the
crucial interval by adjusting Equation (1) into:

F *(Vx, Vy) = C · S
2(Vx, Vy)
Vy − Vx

, (3)

where S(Vx, Vy) denotes the significance sum of the through-
put samples that fall in the interval [Vx, Vy], and C is the same
constant as that in Equation (1). When the crucial interval is
calculated, we increase the significance values of the accepted

samples in S by multiplying them with a fixed factor γ
(empirically set as 1.1 to well balance the tradeoff between
test accuracy and duration). In this way, each acceptance of a
sample is “memorized” to reinforce the concentration of subse-
quent crucial intervals, thus mechanizing our aforementioned
optimization heuristic.

B. Data-Driven Server Selection (DSS)

Similar to FastBTS, FastUpBTS also includes a
history-based server selection method. We find that selecting
the test server(s) with the lowest PING latency, widely used
in existing BTSes, is ineffective. Both our measurement
results and existing researches [63], [64], [65] indicate that
the latency and available downlink/uplink bandwidth are not
highly correlated—the servers yielding the highest throughput
may not always be those with the lowest PING latency. In
fact, latency and bandwidth are oftentimes orthogonal due to
quite a few persistent or transient reasons, such as network
capacity planning, traffic shaping, congestion control, link
sharing, intermediate aggregation, and buffer bloat.

To address this drawback, FastUpBTS takes a data-driven
approach to server selection, which leverages the historical
data collected from the past tests to predict a test server’s
expected throughput for the upcoming bandwidth test. Each
test server maintains a database containing {latency, through-
put} pairs obtained from the setup and bandwidth probing
phases of past tests. Figure 6 visualizes the database on a test
server, where each node represents a data sample collected
from a past test. Then in a new setup phase, the client still
PINGs the test servers, while each server returns an expected
throughput value based on the PING latency by looking up
the database. The client will then rank the selected server(s)
based on their expected throughput values rather than PING
latencies only.

When estimating a test server’s expected throughput, Fas-
tUpBTS takes two key factors into consideration. First, similar
to most of today’s BTSes, FastUpBTS utilizes the PING
latency (l) between the test server and the client, since it
generally reflects the quality of network connections from the
spatial perspective. Furthermore, FastUpBTS adopts another
key parameter w to extend the single latency value l into
a more robust latency interval [l − w, l + w] (as depicted
in Figure 6). In this way, FastUpBTS accommodates and

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1895

Fig. 6. Data-driven server selection that takes both historical latency and
throughput information into account.

leverages more useful historical samples (including the noises)
in the database from the statistical perspective.

While employing the similar insights as introduced by CIS
in Section III-A, FastUpBTS further makes practical simplifi-
cations based on the key observation that only considering the
sampling density can yield decent results when sufficient data
have been accumulated. Concretely, with the measured PING
latency l, the server tunes the parameter w to search for the
desirable latency interval [l−w, l+w] with the highest density

Density(l) = K(l, w)/2w, (4)

where K(l, w) denotes the number of historical data sam-
ples falling in the latency interval. Note that similar to the
enforcement condition in CIS, we also empirically set a lower
bound for the parameter w, i.e., wmin = 0.1 × l, to avoid
the pathological cases where the density is unrealistically
high. Finally, the expected throughput is calculated as an
average of all samples in [l−w, l +w]. In addition, the server
also returns the maximum throughput (using the 99-percentile
value) belonging to [l − w, l + w] to the client. Both values
will be used in the bandwidth probing phase (Section III-C).

Due to its data-driven nature, the effectiveness of DSS
largely depends on the quality of the database. In particular,
DSS is subject to the intrinsic “cold start” (a.k.a, “cold boot”)
problem, i.e., it may not be effective when there are no or very
few tests conducted with regard to the same server. Therefore,
during bootstrapping when servers have not yet accumulated
enough samples, the client can fall back to the traditional
latency-based selection strategy. Moreover, given that the
“outdated” samples in the database cannot well represent the
test server’s recent status, FastUpBTS only maintains the most
up-to-date (typically within one week) historical data in the
databases, so as to facilitate more precise estimation of the
expected throughput from the temporal perspective.

C. Informed Multi-Homing (IMH)

For high-speed access networks like 5G, the last-mile
access link may not always be the bottleneck. To saturate the
access link, we design the Adaptive Multi-Homing (AMH)
mechanism in FastBTS to dynamically adjust the concurrency
level, i.e., the number of concurrent connections between
the servers and client. In brief, AMH starts with a single

connection to cope with possibly low-speed access links.
At this time, the client establishes another connection with
the second highest-ranking server. After that, we monitor the
throughput variations of the two connections—if they do not
seem to influence each other (due to cross-flow contention),
the client establishes yet another connection with the third
highest-ranking server; otherwise, the access link is considered
saturated and the client stops further probing. More details of
AMH can be found in our preliminary work [24].

AMH is quite effective in practice, but oftentimes
time-consuming due to the gradual exploration process.
Fortunately, there is a crucial opportunity for FastUpBTS
to overcome this shortcoming, i.e., in mainstream BTSes
uplink testing always follows downlink testing. As a result,
we advance AMH into the more efficient Informed Multi-
Homing (IMH) mechanism, by leveraging the access media
information and the downlink test result to estimate in one
shot how many servers are really needed for uplink testing,
so that the gradual exploration process of AMH can be fully
avoided in FastUpBTS.

Specifically, in FastUpBTS each test server (i.e., a budget
VM server rented from Aliyun ECS) has 100-Mbps downlink
bandwidth, and from our measurement results in Section II-C
we obtain two key observations: (1) all the uplink bandwidth
test results under 2G/3G/4G and WiFi 4 networks are below
100 Mbps; (2) for the vast majority (97%) of clients, their
uplink bandwidths are lower (in fact much lower in practice)
than half of the downlink bandwidths. Hence, when the client’s
access type is 2G/3G/4G or WiFi 4, or the measured downlink
bandwidth is lower than 200 Mbps, we have high confidence
that the client’s uplink bandwidth will not exceed 100 Mbps,
and thus only need to allocate one test server for the uplink
bandwidth test. Otherwise, we conservatively over-estimate the
upper bound of the uplink bandwidth as Bdown

2 (Bdown denotes
the downlink bandwidth), and allocate
Bdown

2∗100 � servers for
the test. In very few (<1%) cases, we observe that the
downlink bandwidths of all the allocated servers are saturated;
at this time, we will fall back to AMH to gradually add test
servers.

IV. EVALUATION

In this section, we compare the performance and over-
head of FastUpBTS with those of the seven state-of-the-art
BTSes (excluding the Android API for its extreme simplicity)
studied in Section II. For fair comparisons, we re-implement
all the BTSes based on our reverse engineering efforts or
directly leveraging their open-source versions, and use the
same setup (Section IV-A) for all these re-implemented BTSes.
For comprehensive comparisons, we conduct both end-to-end
evaluations for whole systems (Section IV-B) and in-depth
evaluations for individual components (Section IV-C).

A. Experiment Setup

Edge-to-Cloud Testbed. We build a geo-distributed testbed
consisting of 30 Aliyun ECS cloud servers (see Figure 7 for
their locations) and 10 Microsoft OpenNetLab edge nodes (as
mentioned in Section II-C). The cloud servers have the same

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

1896 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 7. Geographical distribution of our deployed 30 budget test servers
rented from the Aliyun ECS cloud.

configurations: dual-core Intel CPU@2.5 GHz, 8-GB DDR
memory, 100 Mbps incoming bandwidth (which is crucial in
uplink bandwidth tests), and 100 Mbps outgoing bandwidth.
Note that the abovementioned network capacity of cloud VM
servers only guarantees the throughput between VMs within
the cloud; their actual network bandwidth could be affected
by other factors such as outbound traffic shaping mecha-
nisms, load balancing strategies, and multi-tenant bandwidth
sharing.

For a fair comparison with FastUpBTS, we replicate
the seven other popular BTSes: TBB, SpeedOf, BWP,
Xfinity, LibreSpeed, FAST, and SpeedTest with our uni-
form implementations (whose source code is available at
https://FastUpBTS.github.io), and deploy them on the edge-
to-cloud testbed. Exceptionally, we evaluate the Android API
on the two 5G phones as described in Table I; since its
performance (test accuracy) is extremely poor and its overhead
(test duration and data usage) is almost zero, we choose not
to list its evaluation results in this section.

Diverse Networks. Apart from the edge-to-cloud testbed,
we conduct extensive evaluations under heterogeneous realistic
networks, whose setups are detailed below.

• LAN. We create an in-lab LAN testbed to perform controlled
experiments, where we can craft background traffic. The
testbed consists of two test servers (S1, S2) and two clients
(C1, C2), each equipped with a 2.5 Gbps NIC. They are
connected by a commodity switch with a 1 Gbps forwarding
capability, thus being the bottleneck. When running band-
width tests on this testbed, we maintain two parallel flows:
one background flow between S1 and C1, and the other
bandwidth test flow between S2 and C2. Both of them
are TCP flows using the conventional CUBIC congestion
control algorithm: we first start a 500-Mbps background
flow with iPerf, and then keep monitoring its real-time
throughput; when the throughput stays around 500 Mbps,
we further start the bandwidth test flow.

• Residential Broadband. We deploy three PCs in China,
U.S., and U.K. (see Table I). All the PCs’ uplink access is
20 Mbps residential broadband. The three clients commu-
nicate with the aforementioned 30 test servers to perform
bandwidth tests. We perform in one day 90 groups of tests,
consisting of 3 clients × 3 different time-of-day (0:00, 8:00,
and 16:00) × 10 repetitions. Please refer to Section II-C for
the meaning of a test group.

• 5G experiments were conducted in a Chinese city using
an HV30 phone over China Mobile. We perform in a day
30 groups of tests: 1 client × 3 time-of-day × 10 repetitions.

• LTE experiments were conducted in both China (a university
campus) and U.S. (a large city’s downtown area) using XM8
and GS9, respectively, with a total of 60 groups of tests, i.e.,
2 clients × 3 time-of-day × 10 repetitions.

We use the three metrics (test duration, data usage, and test
accuracy) and the methodology for obtaining the ground truth
as described in Section II-A to assess uplink BTSes.

B. End-to-End Performance

Edge-to-Cloud Testbed. Figure 8a shows the performance
of different BTSes atop the edge-to-cloud testbed. FastUpBTS
outperforms the other BTSes by yielding the highest or
sometimes comparable accuracy (0.93 on average), the shortest
test duration (2.1 seconds on average), and the smallest data
usage (16.5 MB on average). In contrast, the other BTSes’
average accuracy ranges between 0.62 and 0.89; their test
duration is also much longer, from 8.0 to 22.6 seconds,
and they consume much more data (from 63 to 198 MB)
compared to FastUpBTS. In particular, we find that Xfinity
establishes too many parallel connections, thus leading to
poor performance due to the excessive contention across the
connections. FastUpBTS addresses this issue through IMH
(Section III-C) that intelligently configures the concurrency
level according to the network condition.

LAN and Residential Networks. As shown in Figures 8b
and 8c, FastUpBTS yields the highest accuracy (0.89 for
LAN and 0.9 for residential network) among the other six
BTSes, whose accuracy lies within 0.59–0.88 for LAN, and
0.71–0.84 for residential network. The average test duration
of FastUpBTS for LAN and residential network is 2.9 and
2.8 seconds respectively, which are 2.8–7.1× shorter than the
other BTSes. The average data usage of FastUpBTS is 123 MB
for LAN and 13.1 MB for residential network, which are
1.2–7.8× less than the other BTSes. The short test duration
and small data usage are attributed to MR-CIS, which strategi-
cally trades a bit accuracy for remarkably shorter test duration.

LTE and 5G Networks. We evaluate the BTSes’ per-
formance on commercial LTE and 5G networks. Over LTE,
as plotted in Figure 8d, FastUpBTS owns the highest or com-
parable (to the case of SpeedTest) accuracy (0.86 on average),
the smallest data usage (2.34 MB on average), and the shortest
test duration (1.8 seconds on average). Such outstanding
performance mainly stems from MR-CIS which quickly and
accurately estimates the client uplink bandwidth. By contrast,
the other seven BTSes have relatively lower or equal accuracy
(0.54–0.86) and far more data usage (13.5–28.5 MB). SpeedOf
bears the lowest accuracy (0.54) because its bandwidth esti-
mation algorithm (i.e., adopting the average throughput in the
last file transfer session) can be easily disturbed by many
factors like TCP slow start and congestion control, thus leading
to severely underestimated results. FAST, despite having a
relatively high accuracy (0.86), incurs quite long test duration
(16.7 seconds) due to the constant throughput fluctuations in
LTE networks.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1897

Fig. 8. Test duration, data usage, and test accuracy of FastUpBTS, compared with seven representative BTSes under diverse networks. Note that the error
bars indicate the standard deviations rather than min-max deviations.

Figure 8e shows the results for 5G access. It is also
encouraging to see that FastUpBTS outperforms the seven
other BTSes across all three metrics (0.83 vs. 0.36–0.75 for
average accuracy, 40.3 vs. 130.4–471.8 MB for data usage,
and 2.5 vs. 8–30 seconds for test duration). BWP, SpeedOf,
and FAST bear rather low accuracy (<0.5); in comparison,
SpeedTest and Xfinity have relatively high accuracy (0.75 and
0.73). However, the high data usage issue due to their flooding
nature is drastically amplified in the 5G scenario. For example,
SpeedTest incurs very high data usage—up to 361 MB per
test. The data usage for FAST is even as high as 471.8 MB.
FastUpBTS addresses this issue through the synergy of its
key features (MR-CIS + IMH) for fuzzy rejection sampling.
IMH helps quickly saturate the client’s access bandwidth and
MR-CIS effectively accelerates the convergence of throughput
samples, thus greatly saving test duration and data usage.

C. Individual Components

We evaluate the benefits of each component of FastUpBTS
by starting from the vanilla BTS and then incrementally
enabling one at a time atop the edge-to-cloud testbed. Con-
cretely, when MR-CIS is not enabled, we average the through-
put samples during 15 seconds to calculate the test result.
When IMH is not enabled, we apply SpeedTest’s (single-
homing) connection management logic. When DSS is not
enabled, test server(s) are selected based on purely the PING
latency. It is worth clarifying that in all the following results,
the test duration and data usage are calculated as the total
duration and traffic cost of each entire experiment, rather than
only (as a sum of) the crucial intervals.

Memorization-Reinforced Crucial Interval Sampling
(MR-CIS). As shown in Figure 9a, by strategically removing
outliers, MR-CIS increases the average accuracy from 0.82 to
0.88. Further thanks to the fast result generation mechanism,
the test duration is reduced from 15 seconds to 2.7 seconds
and the data usage is reduced by 5.2 times.

We next compare MR-CIS with the sampling approaches
used by the other seven BTSes (refer to Section IV-A), which
use a total of five bandwidth sampling algorithms because
Xfinity employ the same trivial approach of simply averaging
the throughput samples. To fairly compare them with MR-CIS,
we take a replay-based methodology. Specifically, we select
one “template” BTS from which we collect the network
traces during the bandwidth probing phase; the time series
of the aggregated throughput across all connections is then
obtained from the traces and fed to all the sampling algorithms.
We exclude SpeedOf and BWP from this experiment because
they calculate the bandwidth based on the last or fastest
connection that cannot be precisely reconstructed by our replay
method.

We then show the results by using SpeedTest as the template
BTS. The simplest algorithm (averaging) bears the lowest
accuracy (0.82) because it is poor at eliminating the noises
caused by, for example, TCP congestion control; the accuracy
values of FAST and SpeedTest are 0.83 and 0.85, respectively.
In contrast, MR-CIS owns the highest accuracy (0.88). This
confirms the effectiveness of MR-CIS’s sampling algorithm.
The efficiency and effectiveness of MR-CIS lies in that, instead
of incurring much redundancy in test duration and data usage
to achieve a decent test accuracy, MR-CIS keeps calculating

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

1898 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 9. (a) Impact of individual modules of FastUpBTS on top of the edge-to-cloud testbed. (b) Distributions of SCCgp (PING-based) and SCCgd

(Data-driven) when P =20%; (c) P (portion of clients) vs. SCCgp and SCCgd .

the crucial interval of the gathered throughput samples. Once
the crucial interval stabilizes, MR-CIS immediately stops the
test, thus significantly saving test duration and data usage.

Informed Multi-Homing (IMH). When IMH is further
enabled, the test accuracy increases from 0.88 (MR-CIS) to
0.91 (MR-CIS + IMH), as shown in Figure 9a. We repeat
the above experiments over 5G networks where the bottleneck
is more likely to shift to the Internet side. The results show
that IMH improves the average accuracy from 0.84 to 0.89,
while reducing the average data usage from 58.6 MB to
47.3 MB and shortening the average test duration from 3.1 to
2.7 seconds. This is attributed to IMH’s principled multi-
homing strategy, which can efficiently saturate the client’s
access bandwidth especially under high-speed networks like
5G. IMH also facilitates MR-CIS by generating more accepted
throughput samples, thus increasing the test accuracy.

It is worth noting that different from AMH whose testing
over more connections takes additional time, IMH does not
lengthen the test duration or increase the data usage. This is
because in more than 99% cases, IMH determines the number
of parallel connections in one shot, instead of progressively
adjusting the concurrency level as AMH does.

Data-driven Server Selection (DSS). We employ cross-
validation for a fair comparison between the PING-based
method and DSS in three steps: (1) We do file transfers
between every server and a randomly selected portion (P)
of all clients to gather throughput samples. (2) Each client
C runs a bandwidth test towards every server. In each test,
the clients’ historical test records (excluding the record of C)
gathered in the previous step is utilized by each server to
calculate the expected bandwidth, which is then returned to C.
(3) Each client calculates three rankings of the servers based
on the server-returned expected bandwidth: Rankg , Rankp,
and Rankd. Rankg refers to the server ranking based on the
ground truth. Rankp is the ranking calculated based on PING
latency; and Rankd is the ranking computed by DSS. We use
the Spearman Correlation Coefficient (SCC [66]) to calculate
the similarity SCCgp between Rankg and Rankp, as well as
the similarity SCCgd between Rankg and Rankd.

The distributions of SCCgp and SCCgd when P = 20%
are shown in Figure 9b. We find that SCCgd is much higher
than SCCgp in terms of the median (0.84 vs. 0.54), average
(0.82 vs. 0.52), and maximum (0.94 vs. 0.88) values. Further,
Figure 9c shows that SCCgd drops as P decreases; however,

even when P decreases to 5%, SCCgd (0.66) is still 27%
larger than SCCgp (0.52). These results show that DSS
works reasonably well even with limited historical data, which
confirms the key insight of DSS—the available bandwidth of
a test server is not highly correlated with the real-time PING
latency to the client, but the server’s expected throughput
estimated from its recent performance. We enable DSS in
our experiments of Figure 9a with P = 20%. Compared to
MR-CIS + IMH, enabling DSS improves the average accuracy
from 0.91 to 0.93; the test duration and data usage slightly
reduce.

Apart from the performance gain, we also comparatively
analyze the overhead of DSS and the traditional PING-based
server selection strategy. Compared with the PING-based
approach, DSS incurs more memory and CPU overhead at the
server side, as it requires additional storage space for historical
data (i.e., {throughput, latency} pairs of the past tests) and
extra calculation of latency interval (which is detailed in
Section III-B). Quantitatively, when there are historical data
of 10K past tests, the memory overhead is only 172 KB on
average, and the latency interval can be figured out in 4 ms on
average on a budget VM (whose configuration is introduced
in Section IV-A).

Bandwidth Probing Intrusiveness. Moreover, we wish
to evaluate the probing intrusiveness of FastUpBTS using the
LAN testbed (refer to Section IV-A). We simultaneously run
a 200 Mbps background flow and the bandwidth test flow that
shares a 1 Gbps bottleneck at the switch. Ideally, a BTS should
measure the bottleneck bandwidth to be 800 Mbps without
interfering with the background flow, whose average/stdev
throughput is thus used as a metric to assess the intrusiveness.

Our test procedure is as follows. We first run the background
flow alone for one minute and measure its throughput as
200 Mbps. We then run FastUpBTS with the background flow
and measure the average (standard deviation) of both the back-
ground flow throughput and the testing flow throughput during
the test. We demonstrate the two groups’ throughput samples
with their timestamps normalized by the test duration in Fig-
ure 10. As we can see, FastUpBTS incurs trivial impact (0.3%
degradation on the average throughput and 0.8% increase on
the standard deviation) on the background flow. We repeat the
above test procedure under other settings, with the background
flow’s bandwidth varying from 100 to 900 Mbps, and observe
consistent results.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1899

Fig. 10. Evaluating the probing intrusiveness of FastUpBTS.

Overall Runtime Overhead. Apart from test duration and
data usage (as quantified in Section IV-B and the front part of
Section IV-C), we also pay attention to the CPU and memory
overheads incurred by FastUpBTS at client and server sides.

At the client side, our evaluation involves different types of
devices including smartphones, PCs, and VMs (as mentioned
in Section IV-A). On the four smartphones (i.e., Samsung
Galaxy S9, S10, Xiaomi M8, and Huawei Honor V30), the
average CPU and memory overheads during bandwidth testing
are 11% and 47 MB, respectively, which are quite acceptable.
Besides, on the client PCs and VMs, the CPU overhead of
FastUpBTS is even lower (5.4% on average), and the memory
overhead is also trivial (17 MB on average).

At the server side, the incurred overhead is also low. When
the bottleneck bandwidth is 100 Mbps, the CPU overhead is
as small as 3.2% (single core, tested on Intel CPU@2.5 GHz,
8-GB memory). The CPU overhead is only 9% even when the
bottleneck bandwidth is 1 Gbps.

V. RELATED WORK

Bandwidth measurement is an essential component for
many networked systems that empower a variety of important
applications and use cases [65], [67], [68]. Apart from the
mainstream BTSes described in Section II, other bandwidth
measurement methods mostly target specific types of networks
(e.g., datacenter [69], LTE [70], and WiFi [71]) and require
special support from the deployed infrastructure. For example,
AuTO [69] conducts bandwidth estimation over DCTCP in
data centers; it needs switch support to tag ECN marks on the
data packets, and thus is challenging to be applied in WAN.
Besides, Huang et al. [70] propose to deploy monitors inside
the cellular core network for bandwidth measurement. In addi-
tion, Dischinger et al. [72] devise a bandwidth measurement
tool which concurrently leverages multiple packet trains with
different sending rates to measure the link bandwidth of
residential broadband network.

While almost all the commercial BTSes we study in
Section II employ flooding-based methods to combat mea-
surement noises, there exists quite a few non-flooding ultra-
light methods in academia. Some of them (e.g., IGI [73]
and Spruce [74]) employ a packet gap model that indirectly
infers the access bandwidth based on the timing information
of strategically crafted packets. Others (e.g., pathload [75] and
FlowTrace [76]) utilize a packet rate model that sends packet
trains at different rates to explore the highest possible rate
that does not lead to congestion. Unfortunately, these methods

are highly sensitive to the packet gaps’ timing information or
packet trains’ sending rates. Therefore, in practice they can be
easily disrupted by many factors like packet loss [73], [77],
queueing [73], and data/ACK aggregation [77], especially in
high-speed networks.

Designed as a generic network service for Internet users,
FastUpBTS differs from and complements the above work.
FastUpBTS targets at conducting fast and light uplink band-
width tests especially for high-speed wide-area networks (e.g.,
5G), significantly reducing data usage and test duration for
clients and servers. It does not require any hardware support
at the client or server side; also, it does not require the OS
kernel modification at the server side, which however is a must
in FastBTS to enable Elastic Bandwidth Probing (EBP) [24].

VI. CONCLUDING REMARKS

In this paper we present FastUpBTS, a novel Internet
bandwidth testing system, to make uplink bandwidth testing
fast and light as well as accurate. By strategically accommo-
dating and exploiting the test noises, FastUpBTS achieves the
highest level of accuracy among commercial BTSes, while
significantly reducing data usage and test duration. Further,
FastUpBTS only employs a small number of test servers,
several orders of magnitude fewer than the state of the arts.

Despite the above merits, FastUpBTS still bears several
limitations at the moment. First, when testing a client’s uplink
bandwidth, FastUpBTS requires the preceding test result of
downlink bandwidth at the client side. Nevertheless, we note
that there exist certain application scenarios where an uplink
bandwidth test happens all alone (not following a downlink
bandwidth test). In this case, the performance of FastUpBTS
may degrade due to the potential inaccuracy of Informed
Multi-Homing (IMH). Second, the performance of Data-driven
Server Selection (DSS) can be affected by its cold start phase
as well as the specific deployment of test servers. We have
been exploring practical ways to overcome these limitations.

ACKNOWLEDGMENT

The authors would like to appreciate the editors and anony-
mous reviewers for their valuable comments.

REFERENCES

[1] Measuring Broadband America Fixed Broadband Report: A Report on
Consumer Fixed Broadband Performance in the U.S., Federal Commun.
Commission, Washington, DC, USA, 2014.

[2] Measuring Broadband America Fixed Broadband Report, Federal Com-
mun. Commission, Washington, DC, USA, 2016.

[3] SpaceX Starlink Speeds Revealed as Beta Users Get Downloads
of 11 to 60 Mbps. Accessed: Mar. 17, 2022. [Online]. Available:
https://arstechnica.com/information-technology/2020/08/spacex-
starlink-beta-tests-show-speeds-up-to-60mbps-latency-as-low-as-31ms/

[4] Add 5G Capabilities to Your App. Accessed: Mar. 17, 2022. [Online].
Available: https://developer.android.com/about/versions/11/features/5g

[5] WiFiMaster. Accessed: Mar. 19, 2022. [Online]. Available: https://en.
wifi.com/wifimaster/

[6] S. Bauer, D. D. Clark, and W. Lehr, “Understanding broadband speed
measurements,” TPRC, 2010, pp. 1–38.

[7] Understanding Internet Speeds. Accessed: Mar. 22, 2022. [Online].
Available: https://www.att.com/support/article/u-verse-high-speed-inter
net/KM1010095

[8] Z. S. Bischof, J. S. Otto, M. A. Sánchez, J. P. Rula, D. R. Choffnes, and
F. E. Bustamante, “Crowdsourcing ISP characterization to the network
edge,” in Proc. SIGCOMM W-MUST Meas. Up Stack Workshop, 2011,
pp. 61–66.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

1900 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

[9] Home Network Tips for the Coronavirus Pandemic. Accessed:
Mar. 26, 2022. [Online]. Available: https://www.fcc.gov/home-network-
tips-coronavirus-pandemic

[10] How Coronavirus Affects Internet Usage and What You Can Do to
Make Your Wi-Fi Faster. Accessed: Mar. 26, 2022. [Online]. Avail-
able: https://www.nbcnewyork.com/news/local/how-coronavirus-affects-
internet-usage-and-what-you-can-do-to-make-your-wi-fi-faster/2332117/

[11] A. Xiao et al., “An in-depth study of commercial MVNO: Measurement
and optimization,” in Proc. MobiSys, Jun. 2019, pp. 457–468.

[12] Y. Li et al., “Understanding the ecosystem and addressing the fundamen-
tal concerns of commercial MVNO,” IEEE/ACM Trans. Netw., vol. 28,
no. 3, pp. 1364–1377, Jun. 2020.

[13] F. Zarinni, A. Chakraborty, V. Sekar, S. R. Das, and P. Gill, “A first
look at performance in mobile virtual network operators,” in Proc. IMC,
Nov. 2014, pp. 165–172.

[14] P. Schmitt, M. Vigil, and E. Belding, “A study of MVNO data
paths and performance,” in Proc. Passive Act. Meas. (PAM). Cham,
Switzerland: Springer, 2016, pp. 83–94.

[15] AT&T BTS. Accessed: Mar. 10, 2022. [Online]. Available: http://
speedtest.att.com/speedtest/

[16] SpeedTest Insights. Accessed: Mar. 10, 2022. [Online]. Available: https://
www.speedtest.net/insights

[17] nPerf BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://www.
nperf.com/en/map/US/-/2420.ATT-Mobility/signal/?ll=37.596824001083
67&lg=-109.44030761718751&zoom=8

[18] D. Gao et al., “A nationwide census on WiFi security threats: Preva-
lence, riskiness, and the economics,” in Proc. MobiCom, Sep. 2021,
pp. 242–255.

[19] Y. Li et al., “A nationwide study on cellular reliability: Measure-
ment, analysis, and enhancements,” in Proc. ACM SIGCOMM Conf.,
Aug. 2021, pp. 597–609.

[20] Source of Android/NetworkCapabilities.Java. Accessed: Mar. 15,
2022. [Online]. Available: https://cs.android.com/android/platform/super
project/+/master:frameworks/base/packages/Connectivity/framework/src/
android/net/NetworkCapabilities.java

[21] Xfinity BTS. Accessed: Mar. 10, 2022. [Online]. Available: http://
speedtest.xfinity.com/

[22] ThinkBroadband BTS. Accessed: Mar. 10, 2022. [Online]. Available:
https://www.thinkbroadband.com/speedtest/

[23] SpeedOf.Me BTS. Accessed: Mar. 10, 2022. [Online]. Available:
https://www.speedof.me/

[24] X. Yang et al., “Fast and light bandwidth testing for internet users,” in
Proc. NSDI. Berkeley, CA, USA: USENIX, 2021, pp. 1011–1026.

[25] G. Casella, C. P. Robert, and M. T. Wells, “Generalized accept-reject
sampling schemes,” Festschrift Herman Rubin, vol. 45, pp. 342–347,
Jan. 2004.

[26] Microsoft OpenNetLab: The Next-Gen Platform for AI-assisted Network-
ing. Accessed: Mar. 10, 2022. [Online]. Available: https://opennetlab.
org/

[27] iPerf. Accessed: Mar. 10, 2022. [Online]. Available: https://iperf.fr/
[28] E. Alimpertis, A. Markopoulou, and U. Irvine, “A system for crowd-

sourcing passive mobile network measurements,” in Proc. NSDI.
Berkeley, CA, USA: USENIX, 2017, pp. 1–2.

[29] I. Canadi, P. Barford, and J. Sommers, “Revisiting broadband perfor-
mance,” in Proc. IMC, 2012, pp. 273–286.

[30] J. Sommers and P. Barford, “Cell vs. WiFi: On the performance of metro
area mobile connections,” in Proc. IMC, 2012, pp. 301–314.

[31] TestMy.net: A UDP-based Bandwidth Testing Tool. Accessed:
Mar. 10, 2022. [Online]. Available: https://testmy.net/hoststats/udp

[32] Framework for QUIC Throughput Testing. Accessed: Mar. 10, 2022.
[Online]. Available: https://www.ietf.org/archive/id/draft-corre-quic-
throughput-testing-00.html

[33] X. Yang et al., “Mobile access bandwidth in practice: Measurement,
analysis, and implications,” in Proc. ACM SIGCOMM Conf., Aug. 2022,
pp. 114–128.

[34] BandwidthPlace BTS. Accessed: Mar. 10, 2022. [Online]. Available:
https://www.bandwidthplace.com/

[35] Centurylink BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://
www.centurylink.com/home/help/internet/internet-speed-test.html/

[36] Cox BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://speedtest.
cox.com

[37] DSLReports. Accessed: Mar. 10, 2022. [Online]. Available:http://www.
dslreports.com/speedtest/

[38] FAST BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://fast.
com/

[39] LibreSpeed BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://
librespeed.org/

[40] M-Lab NDT BTS. Accessed: Mar. 10, 2022. [Online]. Available:
https://speed.measurementlab.net/#/

[41] NYSbroadband BTS. Accessed: Mar. 10, 2022. [Online]. Available:
http://nysbroadband.speedtestcustom.com/

[42] Optimum BTS. Accessed: Mar. 10, 2022. [Online]. Available:
https://www.optimum.net/pages/speedtest.html

[43] HTML5 Speed Test by SourceForge. Accessed: Mar. 10, 2022. [Online].
Available: https://sourceforge.net/speedtest/

[44] Speakeasy. Accessed: Mar. 10, 2022. [Online]. Available: https://www.
speakeasy.net/speedtest/

[45] Spectrum BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://
www.spectrum.com/internet/speedtest-only/

[46] SpeedTest BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://
www.speedtest.net

[47] Verizon BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://
www.verizon.com/speedtest/

[48] Speedtest.xyz BTS. Accessed: Mar. 10, 2022. [Online]. Available: https://
speedtest.xyz/

[49] Wireshark. Accessed: Mar. 10, 2022. [Online]. Available: https://
www.wireshark.org/

[50] Source Code of Xfinity. Accessed: Mar. 10, 2022. [Online]. Available:
https://github.com/Comcast/Speed-testJS

[51] Source Code of LibreSpeed. Accessed: Mar. 10, 2022. [Online].
Available: https://github.com/librespeed/speedtest

[52] M-Lab NDT BTS. Accessed: Mar. 10, 2022. [Online]. Available:
https://github.com/m-lab/ndt7-client-go

[53] Documentation of SpeedOf. Accessed: Mar. 10, 2022. [Online].
Available: https://speedof.me/howitworks.html

[54] Documentation of FAST. Accessed: Mar. 10, 2022. [Online]. Available:
https://netflixtechblog.com/building-fast-com-4857fe0f8adb

[55] Documentation of SpeedTest. Accessed: Mar. 10, 2022. [Online]. Avail-
able: https://help.speedtest.net/hc/en-us/articles/360038679354-How-
does-Speedtest-measure-my-network-speeds

[56] SpeedOf.Me: How It Works. Accessed: Mar. 10, 2022. [Online]. Avail-
able: https://speedof.me/howitworks.html

[57] BandwidthTest API in Android. Accessed: Mar. 15, 2022. [Online].
Available: https://cs.android.com/android/platform/superproject/+/master:
frameworks/base/core/tests/bandwidthtests/src/com/android/
bandwidthtest/BandwidthTest.java

[58] B. Boashash, Time-Frequency Signal Analysis and Processing: A Com-
prehensive Reference. New York, NY, USA: Academic, 2015.

[59] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf.
Theory, vol. 41, no. 3, pp. 613–627, Mar. 1995.

[60] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[61] A. Narayanan et al., “A first measurement study of commercial mmWave
5G performance on smartphones,” in Scanning Electron Microscope.
Cambridge, U.K.: Cambridge Univ. Press, 2019.

[62] M. Levandowsky and D. Winter, “Distance between sets,” Nature,
vol. 234, no. 5323, pp. 34–35, 1971.

[63] A. Narayanan et al., “A variegated look at 5G in the wild: Perfor-
mance, power, and QoE implications,” in Proc. ACM SIGCOMM Conf.,
Aug. 2021, pp. 610–625.

[64] J. Wang et al., “An active-passive measurement study of TCP perfor-
mance over LTE on high-speed rails,” in Proc. Mobicom, 2019, pp. 1–16.

[65] R. K. P. Mok, H. Zou, R. Yang, T. Koch, E. Katz-Bassett, and
K. C. Claffy, “Measuring the network performance of Google cloud
platform,” in Proc. IMC, Nov. 2021, pp. 54–61.

[66] A. Lehman, JMP for Basic Univariate and Multivariate Statistics: A
Step-by-Step Guide. Cary, North CA, USA: SAS Institute, 2005.

[67] F. Li, A. A. Niaki, D. Choffnes, P. Gill, and A. Mislove, “A large-
scale analysis of deployed traffic differentiation practices,” in Proc.
SIGCOMM, Aug. 2019, pp. 130–144.

[68] R. Yang, R. K. Mok, S. Wu, X. Luo, H. Zou, and W. Li, “Design
and implementation of web-based speed test analysis tool kit,” in Proc.
Passive Act. Meas. (PAM). Berlin, Germany: Springer, 2022, pp. 83–96.

[69] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proc. SIGCOMM, Aug. 2018, pp. 191–205.

[70] J. Huang et al., “An in-depth study of LTE: Effect of network protocol
and application behavior on performance,” in Proc. ACM SIGCOMM,
Aug. 2013, pp. 363–374.

[71] T. Yang, Y. Jin, Y. Chen, and Y. Jin, “RT-WABest: A novel end-to-
end bandwidth estimation tool in IEEE 802.11 wireless network,” Int. J.
Distrib. Sensor Netw., vol. 13, no. 2, 2017, Art. no. 1550147717694889.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FAST UPLINK BANDWIDTH TESTING FOR INTERNET USERS 1901

[72] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Character-
izing residential broadband networks,” in Proc. IMC, 2007, pp. 43–56.

[73] N. Hu, L. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating
internet bottlenecks: Algorithms, measurements, and implications,” in
Proc. SIGCOMM, 2004, pp. 41–54.

[74] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proc. IMC, 2003, pp. 39–44.

[75] M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-end
available bandwidth,” in Proc. PAM. Fort Collins, CO, USA: Springer,
2002, pp. 14–25.

[76] A. Ahmed, R. Mok, and Z. Shafiq, “FLOWTRACE: A framework
for active bandwidth measurements using in-band packet trains,” in
Proc. Passive Act. Meas. (PAM). Cham, Switzerland: Springer, 2020,
pp. 37–51.

[77] B. Melander, M. Bjorkman, and P. Gunningberg, “Regression-based
available bandwidth measurements,” in Proc. SPECTS, 2002, pp. 14–19.

Zhenhua Li (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees in computer science and
technology from Nanjing University in 2005 and
2008, respectively, and the Ph.D. degree in com-
puter science and technology from Peking Univer-
sity in 2013. He is currently a Tenured Associate
Professor with the School of Software, Tsinghua
University. His research interests include mobile
networking/emulation and cloud computing/storage.
He is a Senior Member of ACM.

Xingyao Li received the B.S. degree from the
School of Software, Tsinghua University, Beijing,
China, in 2021, where he is currently pursuing the
M.Eng. degree. His research interests include cloud
computing/storage and network measurement.

Xinlei Yang (Graduate Student Member, IEEE)
received the B.S. degree from the School of Soft-
ware, Tsinghua University, Beijing, China, in 2019,
where he is currently pursuing the Ph.D. degree. His
research interests include network measurement and
web techniques.

Xianlong Wang received the B.S. degree from the
School of Software, Beijing Jiaotong University,
in 2019. He is currently pursuing the M.Eng. degree
with the School of Software, Tsinghua University.
His research interests include network measurement
and cloud computing/storage.

Feng Qian (Senior Member, IEEE) received the
B.S. degree from Shanghai Jiao Tong University
and the Ph.D. degree from the University of Michi-
gan. He is currently an Associate Professor with
the Computer Science and Engineering Department,
University of Minnesota–Twin Cities. His research
interests include mobile systems, AR/VR, mobile
networking, wearable computing, real-world system
measurements, and system security. He is a Senior
Member of ACM.

Yunhao Liu (Fellow, IEEE) received the B.S. degree
from the Automation Department, Tsinghua Uni-
versity, and the M.S. and Ph.D. degrees in com-
puter science and engineering from Michigan State
University. He is currently a Full Professor and
the Dean of Global Innovation Exchange (GIX),
Tsinghua University. His research interests include
sensor networks, the IoT, localization, RFID, distrib-
uted systems, and cloud computing. He is a Fellow
of ACM.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:56:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

