Understanding the Predictability of Smartwatch Usage

Yunsheng Yao*
Indiana University
Bloomington, IN, USA
yy29@iu.edu

ABSTRACT

We explore the predictability of smartwatch usage using a 9-month
dataset collected from 27 users through a crowd-sourced user trial.
Specifically, we investigate the predictability of (1) the device energy
consumption, (2) the application launch time, and (3) the screen
display. Overall, we find that all three aspects exhibit reasonably
good predictability. Our findings provide key knowledge and in-
sights for developing efficient and intelligent energy management
services for future smartwatch systems.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile de-
vices.

KEYWORDS
Smartwatch; Usage Predictability; Energy Consumption.

ACM Reference Format:

Yunsheng Yao, Xing Liu, and Feng Qian. 2019. Understanding the Predictabil-
ity of Smartwatch Usage. In The 5th ACM Workshop on Wearable Systems
and Applications (WearSys’19), June 21, 2019, Seoul, Republic of Korea. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3325424.3329661

1 INTRODUCTION

Smartwatch is one of the most popular wearable gadgets. Its sales
are expected to exceed 100 million by 2020 [1]. Compared to tra-
ditional mobile devices such as smartphones and tablets, smart-
watches operate under much more constrained energy budget. On
one hand, their small form factors and wearable nature limit their
performance and battery capacity. On the other hand, the func-
tionalities of wearables are becoming far more ubiquitous and rich.
For example, researchers have developed a wide spectrum of novel
applications that fully exploit watches’ potentials, such as deep
learning [19], sign language translation [10], and drinking activity
monitoring [8]. All these features incur additional energy footprint
and heat dissipation on smartwatches.

Given the potential mismatch between smartwatches’ rich func-
tionalities and tight energy budget, smartwatches need smart en-
ergy management at the operating system (OS) level. Despite a

*Current affiliation: Amazon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WearSys’19, June 21, 2019, Seoul, Republic of Korea

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6775-2/19/06...$15.00
https://doi.org/10.1145/3325424.3329661

Xing Liu

University of Minnesota

Minneapolis, MN, USA
liu00801@umn.edu

Feng Qian
University of Minnesota
Minneapolis, MN, USA
fengqian@umn.edu

plethora of work on energy management and optimization for
smartphones [4, 5, 11], the corresponding state-of-the-art is still
quite rudimentary for smartwatches. For example, Android Wear
uses static policies for controlling energy-hungry components such
as display, with much room for improvement [13]. Porting existing
smartphone energy management schemes to smartwatches is in-
deed possible. Nevertheless, we are more interested in exploring the
feasibility of leveraging wearable-specific characteristics to further
facilitate energy management on smartwatches. In particular, we
hypothesize that compared to smartphones, smartwatches exhibit
better predictability of users’ and applications’ behaviors and there-
fore the incurred energy consumption, due to smartwatches’ small
form factors that limit user interactions as well as the excessive
application states. Such predictability, if exists, can be leveraged
to make energy management decisions more intelligent. For exam-
ple, accurate prediction of smartwatch usage in a 12-hour window
helps the energy manager adaptively and proactively turn off low-
priority features, allowing the battery to survive at the end of the
day. Besides benefiting the energy aspect, good usage predictability
also enables other important use cases such as fast app launching,
smart network interface selection, and smart display brightness
control.

Motivated by the above, in this study, we explore the predictabil-
ity of smartwatch usage using a large 9-month dataset collected
from 27 smartwatch users through an IRB-approved user study.
This dataset bears to our knowledge the longest duration compared
to prior datasets such as [17] and [13]. Leveraging this dataset, we
answer the following questions that are under-explored by previous
studies.

o How predictable is the smartwatch energy consumption? We feed
our collected data into an accurate smartwatch energy model. We
then apply off-the-shelf machine learning algorithms to predict
each user’s energy consumption using historically observed usage
activities. We find that overall the energy consumption can be
well predicted: at the granularity of five energy levels, the median
prediction accuracy across users reaches around 90%. We find poor
predictability is usually caused by infrequent device usage. At the
hardware component level and the device state level, the energy
consumption also exhibits good predictability in general.

o How predictable are application launches? Users can run diverse
apps on smartwatches. Accurately predicting the app launch time
facilitates per-app energy accounting. Meanwhile, it also helps
app pre-launching, which can effectively reduce the perceived app
launch time [21]. We find that many smartwatch apps’ launches
exhibit predictable patterns. The median precision and recall for all
users’ app launch predictions are 79.4% (84.6%) and 86.5% (91.2%),
respectively, when the prediction granularity is 5 (15) minutes.
Our further analysis indicates that performing app pre-launching

https://doi.org/10.1145/3325424.3329661
https://doi.org/10.1145/3325424.3329661

WearSys’19, June 21, 2019, Seoul, Republic of Korea

based on such predictions helps hide the perceived loading time
for the vast majority of the apps while incurring very small energy
overhead if the prediction is inaccurate.

o How predictable is the smartwatch screen display? Most smart-
watches use OLED display whose power consumption depends
on the color of each displayed pixel. The traditional way of pro-
filing the OLED display power is to perform pixel counting [5].
Doing so incurs non-trivial computational and energy overhead on
smartwatches. We find that on smartwatches, the screen display is
dominated by apps’ Ul as opposed to other content such as large im-
ages and videos that frequently appear on smartphones and tablets.
Therefore, the pixels’ color distribution can be well predicted using
lightweight measurable information such as the foreground app
name and its state, as confirmed by us using our data.

Overall, our preliminary findings quantitatively validate the
aforementioned hypothesis, and provide key insights for develop-
ing efficient and intelligent energy management services for future
smartwatches. In the remainder of this paper, §2 gives the back-
ground of our user trial. §3, §4, and §5 describe our results. §6
discusses related work, followed by the conclusion and future work
in §7.

2 BACKGROUND

We conducted an IRB-approved smartwatch user study at a large
U.S. university. The study was open to students, faculty, and staff
members. We recruited 27 users out of more than 200 applicants.
The participants consist of 18 students, 5 staff members, and 4
faculty members. 26% of the participants were female. We provided
each user with an LG Urbane Android smartwatch. The watch
is equipped with a quad-core Cortex A7 processor with 512MB
memory, 4GB storage space, WiFi/Bluetooth radios, and various
sensors. The watch runs Android Wear OS 1.3.

Despite being very familiar with conventional watches, many
participants have limited or even no experiences on smartwatch.
We thus provided the users with an orientation session where we
went through all features of the smartwatch. Also, we started the
actual data collection several months after giving the watch to each
participant. This gives more than enough time for the participants
to get familiar with the smartwatches and to develop their usage
habits. The actual data collection lasted more than 9 months from
late 2016 to 2017.

We developed a custom data collection system which collects a
wide range of information including application activities, screen-
shots, screen brightness level, CPU utilization, device power state,
WiFi/Bluetooth states, and user interaction events. The data collec-
tor runs in the background and is transparent to users. The collected
data is automatically uploaded to our secure server over WiFi at
night when the watch is being charged.

We also developed fine-grained energy models through in-lab
controlled experiments. The ground truth power that is used to fit
the model is measured using a Monsoon power monitor [2] hooked
to the watch. Our model consists of various system components
including sleep/wakeup base, CPU, display, WiFi, Bluetooth, and
touching events. The error rate of the model (w.r.t. the overall
device energy consumption) is less than 6% based on our tests using

Yunsheng Yao, Xing Liu, and Feng Qian

various workloads. Details of the energy model can be found in our
prior work [13].

3 PREDICTING ENERGY CONSUMPTION

Motivation. Smartwatch operates under tight energy constraints.
Accurate prediction of its energy consumption helps facilitate smart
energy management services as described in §1. Comparing to
smartphones, smartwatches have relatively homogeneous function-
alities, which can possibly lead to better predictability of the energy
usage.

Methodology. We study the energy usage pattern for all 27 users
during the 9-months data collection period. The daily energy con-
sumption for each user is calculated by applying our power model.
We first gather usage events or statistics for CPU, display, Bluetooth,
WiFi, etc., and then apply our power model to obtain the total daily
energy consumption. Since predicting the precise energy consump-
tion value is not practical, we convert the actual battery drain (in
mADh) into 5 energy consumption levels. For a better granularity,
we further extend the number of energy consumption levels to 10
and 15.

We choose the Support Vector Machine (SVM) classification algo-

rithm for the energy level prediction. Specifically, we use the daily
energy consumption level of a week to form a 7-dimensional feature
vector X. We mark the energy consumption level of the day right
after the week as label Y. Then we proceed with the same procedure
for every consecutive 8 days within the training window (described
below) to construct the training data. The reason we choose 7 as the
feature vector size is because it reflects a user’s weekly schedule.
We also consider larger vector sizes (history windows), such as 10
and 15 days. We use a sliding window based approach to learn and
predict energy usage pattern over time. For each user, we first train
the classifier with the initial 20% of the feature-label (or X-Y) pairs,
and then let the classifier predict the next 5% of the dataset’s labels
(the data is sorted in chronological order). Next, we advance both
the training and the prediction window by 5%, and so on, in order
to emulate an online prediction scheme. We apply SVM with RBF
kernel provided by Scikit-Learn [3].
Results. Figure 1 shows the average prediction accuracy across all
users, for feature vector sizes of 7, 10, and 15 (days). Most users ex-
hibit high prediction accuracy where the median values are around
90%. The accuracy remains similar across different vector sizes.
Figure 2 shows the results with different energy consumption levels
of 5, 10, and 15. As expected, the prediction accuracy improves as
the number of energy consumption levels decreases.

We notice low prediction accuracy (less than 50%) for some
users from Figure 1. We find most of these users barely used their
smartwatches over the study period. The average usage duration
(i.e, when the watch is worn) for these users is only 1.53 hours per
day. In Figure 3, we show the daily average usage hours versus the
prediction accuracy for all users. We clearly observe two clusters of
frequent and infrequent users, and that insufficient daily usage (less
than 2 hours) is correlated with low prediction accuracy, whereas
high usage typically leads to much better predictability.
Component-level Breakdown. We further breakdown the over-
all energy consumption into separate hardware components and
study their individual predictability. We study three components:

Understanding the Predictability of Smartwatch Usage

WearSys’19, June 21, 2019, Seoul, Republic of Korea

1 1 o ® o o o
—Size 7 —5 levels > 6 O;’ 8
0.81= 10 levels 7 EO 8 5 o
=-15 levels 3 o
0.6 s °
L~ w v [
5 5 500
0.4 2
2 0.4 X
© 0. x X
0.2 <
& o xx
oLrr— ‘ ‘ of==== ! 0.2
0.2 0.4 0.6 0.8 1 0 0.5 1 0 5 10 15

Prediction accuracy

Figure 1: Prediction accuracy of daily en-
ergy consumption with varying feature
vector sizes, across all users (energy lev-

Prediction accuracy

Figure 2: Prediction accuracy of daily

energy consumption with varying en-
ergy levels, across all users (vector size

Average daily active hours

Figure 3: Users’ energy consumption

prediction accuracy vs. average daily ac-
tive hours (energy levels = 5, vector size

els = 5). =7). =7).
1 1
—CPU | —awake
0.8 = Screen display - 0.8 }|= doze
sleep
w067 L 0.6
e S
0.4r¢ 0.4
0.2¢ 0.2
o= 0 t
0 0.5 1 0 0.5 1

Prediction accuracy

Figure 4: Prediction accuracy of CPU and display energy
across all users (energy levels = 5, vector size = 7).

CPU (consuming 29% of the overall energy), display (30%), and
Bluetooth/WiFi (together 3.5%). The remaining energy, which is dif-
ficult for us to separate, is drained by smartwatch’s system-on-chip
(SoC) and other components such as sensors. We find that for CPU
and display, which dominate the overall battery drain, their energy
consumption level is highly correlated with the overall energy con-
sumption level, with the median Pearson Correlation Coefficient
(PCC) across all users being 0.97 and 0.98, respectively. As a result,
they can also be well predicted. As illustrated in Figure 4, SVM
achieves a median prediction accuracy of 88% for CPU and 75%
for display. On the other hand, some other hardware components
exhibit a sparse usage pattern. For example, unlike on smartphones,
wireless radio (WiFi and Bluetooth) on smartwatches are lightly
used. Its energy consumption accounts for only 3.5% of, and poorly
correlates with the device-wide energy consumption, with a median
PCC less than 0.4. As a result, it is difficult to predict its usage and
henceforth the energy utilization.

State-level Breakdown. We also breakdown the overall energy
consumption by smartwatch states and study their individual pre-
dictability. The smartwatch states and their energy consumption
percentages are awake (27.2%), dozing (56%), and sleeping (16.8%).
On our LG Urbane watch, the awake state is triggered when a user
actively interacts with the watch. If the user stops the interaction

Prediction accuracy

Figure 5: Prediction accuracy of each device state’s energy
across all users (energy levels = 5, vector size = 7).

for 5 seconds, the smartwatch will go to the dozing state (a “shal-
low” sleeping mode with the watch face darken). If there is no
further interaction for 35 minutes, the watch will go to the sleeping
mode. We then apply SVM to predict the daily per-state energy
consumption level for all users, and get the results in Figure 5. The
median prediction accuracy for the awake state is around 82%. The
dozing state has slightly better accuracy, with a median of 87.3%.
The sleeping state presents the lowest predictability, with a median
of around 59%. A possible explanation is that due to the long timer
(35 minutes), entering the sleeping mode is a relatively rare event,
whose energy consumption thus exhibits more randomness.
Summary. For active smartwatch users, the daily energy consump-
tion level can typically be accurately estimated, with the median
value of around 90%. For a small number of users, their prediction
accuracy is low due to a lack of active usage. We also find gen-
erally good energy consumption predictability at the component
level and the state level. The above findings can be leveraged to
improve the power management and battery life forecast on today’s
smartwatches.

4 PREDICTING APP LAUNCHES

Motivation. Accurately predicting the app launch time facilitates
per-app energy accounting. It also helps app pre-launch, which

WearSys’19, June 21, 2019, Seoul, Republic of Korea

Yunsheng Yao, Xing Liu, and Feng Qian

M ‘.hw

30 f« 30

< “‘ =

PN u‘ H 220

2 I 2

i w\ ‘ M |

< < '| \

3+ | H* W\
oLk J"‘V‘ﬂ e PHA H‘m “‘““‘ 0 m‘\rwm
0 6 12 18 24 0 6

Time

Figure 6: One user’s temporal usage
pattern of the Fitness app.

= Precision

0.8

0.61

CDF

0.4r

0.2

0.4 0.6

Precision

0.8

Figure 9: Precision of app launch prediction, across all users.

can effectively reduce the perceived app loading time [21]. We
notice that lengthy app launch time is in particular a problem on
smartwatches whose computation capability is far lagging behind
compared to modern smartphones. For example, on LG Urbane,
launching Google Maps takes about 8 seconds, and launching a web
browser takes even longer. Meanwhile, today’s smartwatches do
have reasonably large memory (512MB to 2GB), making caching app
launches feasible. Also, compared to smartphone apps, smartwatch
apps are used in more limited contexts. We thus envision it is more
feasible to predict the latter’s launch time.

We exemplify the launch patterns for 3 apps (Fitness, Weather,
and Google Maps) used by 3 different users. Figure 6 plots the Fitness
tracker’s launch time for a user. The X-axis represents the time-of-
day, and the Y-axis counts the app launches over the entire study
period, at a 5-minute granularity. The count is higher at certain
hours, indicating strong temporal patterns (e.g., a higher usage in
the evening when the user goes to the gym). Similar observations
are made in Figure 7 and 8, which show the launch patterns of
Google Map and Weather, respectively, for two other users. Overall,
due to their wearable nature, smartwatches’ app usages are tightly
coupled with a user’s daily activities that oftentimes exhibit strong
predictable patterns.

Methodology. We next detail our methodology. Smartwatch apps
can be largely classified into two categories: (1) apps that require
users’ interaction to launch, and (2) background apps such as email
and instant messengers that are usually passively launched when a
push notification is received. Apps belonging to the second category
typically have a service stub running in the background so the

Tlme

Figure 7: One user’s temporal usage
pattern of the Weather app.

60
S
c 40
* 3
\' S
g
‘ 220
i #f *
w u‘ .
24 0 6 12 18 24
Time

Figure 8: One user’s temporal usage pattern of
the Google Map app.

—Recall
0.8

0.6

CDF

0.4

0.2

0.7 0.8

Recall

0.9

Figure 10: Recall of app launch prediction, across all users.

launching delay is small. We thus focus on the first category of
apps whose long launching delay negatively affects the QoE.

We apply decision tree classification for launch time prediction.

Decision tree is suitable here as a binary decision (either to launch
or not) needs to be made at a certain time. We first describe how
we generate the training and testing set. Both sets are constructed
on a per-user and per-app basis. For each day, we divide its 24
hours into 288 5-minute slots. If the app was launched within a
slot, we set the slot to 1, otherwise 0. Thus for each day we can
get a 0-1 vector of length 288. We use the initial 20% of the days
as the training set and apply the learned prediction model to test
the next 5% days (from 20% to 25%). We then repeat this process by
sliding both training and testing set “forward” by 5% of the days,
until we cover all days. Similar to the scheme used in §3, we use 7
vectors from the consecutive days in a week as the feature and the
8th vector of the day right after the week as the label.
Results. The precision and recall results for all eligible apps across
all users can be found in Figure 9 and 10, respectively. The me-
dian precision is 79.4%, indicating our trained model, despite being
simple, can reasonably avoid type I errors (false positives). The me-
dian recall rate is 86.5%, indicating a good coverage i.e., most app
launches can be detected at the 5-minute granularity. Increasing
the bin size from 5 minutes to 15 minutes further improves both
the precision and recall rates by about 5%: 84.6% median precision
and 91.2% median recall across all users.

When using the above prediction results for app pre-launching,
type I errors (false positives) can lead to energy overhead (i.e., pre-
launching an app that the user does not actually launch). Here

Understanding the Predictability of Smartwatch Usage

WearSys’19, June 21, 2019, Seoul, Republic of Korea

\—Accuracy of clustering \

1 1
0.8] 0.8
. 0.6] 0.6
3 8
0.4] 0.4
0.2] 0.2
0 0
10 15 20 25 30 0.6 0.7
clusters

Figure 11: Number of generated clusters

across all users. users.

we estimate the energy waste incurred by a single type I error.
Assuming CPU is 100% utilized during a pre-launch and the pre-
launch takes 8 seconds (the Google Map case), the overall energy
(including the base energy consumption) wasted by a single type I
error will be around 0.27 mAh according to the power model. On
average, using the above decision tree model, type I errors occur
10 times a day for an average user, so the total energy waste is
less than 1% of the overall battery capacity of our smartwatch (410
mAh). On the other hand, Type II errors (false negatives) do not
bring any energy overhead, since the app will still be launched
normally as triggered by the user.

Summary. We found that many smartwatch apps’ launches exhibit
predictable patterns. The median precision and recall rates across all
users’ app launch predictions are 84.6% and 91.2%, respectively, at
the 15-minute granularity. Our approach will remove the perceived
loading time for up to 91% of the app launches, with negligible
energy overhead when type I errors occur. Regarding the training
overhead, recall that the training only needs to be periodically
performed (e.g., on a daily basis). Therefore, we can offload the
training process onto a cloud or edge server when the smartwatch
is charging.

5 PREDICTING SCREEN DISPLAY

Motivation. On smartwatches, despite the small screen size and
the aggressive sleeping policy, the display is still the most power-
hungry component (§3). Therefore, it is important to accurately
account for the display energy consumption. For OLED display,
which is very popular among mobile devices, since its power con-
sumption is determined by each pixel’s RGB value [5], the typical
approach for modeling and measuring the display power is to count
the pixels of different colors. However, this approach itself incurs
high energy and computational overhead especially on resource-
constrained wearable devices, even if sampling is used. Instead,
our key observation is that compared to a smartphone, the smart-
watch display is more consistent at a per-app or per-app-state basis:
the smartwatch screen is mostly dominated by UI while for smart-
phone, the screen may contain not only Ul but also more dynamic
and custom content such as videos and images; in addition, the
UI components and layout theme are usually fairly consistent for
smartwatch apps, likely due to the small screen size and limited user
interaction. For example, Google Hangout has a dark green frame

0.8 0.9 1
Accuracy

Figure 12: Clustering accuracy across all

Figure 13: Example screenshots be-
longing to six clusters of a user.

and white chat dialog box. As a result, for the same app (state), the
pixel-wise color histograms are usually very similar. Note that users
may change an app’s display scheme, but such events can either be
directly detected or indirectly learned. Based on these observations,
we propose to infer the color distribution of the displayed content
using ultra-lightweight information such as the foreground app
name and the app state.

Methodology. We apply unsupervised learning (clustering) to val-
idate the above assumption. We first extract the color histograms
from all screenshots of all users. There are roughly 100,000 screen-
shots captured during the user study (a screenshot is captured every
30 seconds). We notice that taking a single screenshot indeed incurs
a high overhead - taking about 1 second on our LG Urbane watch.
For each screenshot, we extract all pixels’ color and construct the
corresponding color histogram, which is then converted into a fea-
ture vector. We then apply clustering on the color histograms for
each user. We use Bisect k-means [16], which is similar to k-means
but without requiring specifying the number of clusters that is typ-
ically unknown beforehand. Bisect k-means works by iteratively
splitting a cluster with the lowest internal similarity into two clus-
ters, until the internal similarity values of all clusters are above a
pre-defined threshold. The threshold is empirically chosen to be the
average Euclidean distance between histograms of all application
pairs (obtained using a small training dataset).

Recall that we hypothesize that the color distributions of the
same app or app state tend to remain consistent. To validate this,
we examine the generated clusters. Since each cluster corresponds
to screenshots with similar color distributions, ideally, we expect
that (1) all screenshots in each cluster belong to the same app or
app state, and (2) each cluster corresponds to a unique app or app
state.

Results. The number of clusters for each user is shown in Figure 11,
with the median number being 16. Meanwhile, an average user
has 18 apps installed on her watch. We first assess whether all
screenshots within a cluster belong to the same app. We define
the label of a cluster as the most common app name i.e., the app
name that is owned by the largest fraction of screenshots within
the cluster. We call a screenshot to be correctly clustered if its app
name matches the label of the cluster it belongs to. Then for each
user, we define the clustering accuracy as the ratio between the
number of correctly clustered screenshots and the total number

WearSys’19, June 21, 2019, Seoul, Republic of Korea

of screenshots. Figure 12 plots the distribution of the clustering
accuracy across all users. As shown, the median value is around 81%,
which we believe to be overall decent. Note that this preliminary
result can be further improved in several aspects, including (1)
considering the app state such as the Activity information within
an app (currently we only consider the app name) and (2) enriching
the features by considering, for example, the Ul layout (currently we
only use the color histogram). We also examine the heterogeneity
of the clusters’ labels. For each user, we compute the ratio between
the total number of unique labels (the most common app name
within a cluster) and the total number of clusters. The median value
of the ratio is around 0.85, indicating that the clusters do usually
have different labels. Figure 13 exemplifies screenshots belonging
to different clusters.

We look into the source of error for the results. One major type
of error originates from the fact that when two apps have similar
Uls, their screenshots’ color histograms may also be similar. In this
case, we may have two apps’ screenshots mixed into a single cluster.
However, for the purpose of inferring the display energy, this will
not be an issue because similar color histograms lead to similar
OLED screen power consumption. Upon manual inspection, we
find 40% of mis-clustered screenshots belong to this category.

The above results dictate an ultra-lightweight method for pro-
filing smartwatch’s OLED display energy. Given the clustering
model, which can be obtained by very sparse online training, the
energy profiler simply utilizes the app (state) information to instan-
taneously localize the corresponding color histogram cluster and
thus the display power consumption.

Summary. Despite the small screen size, smartwatch’s display
draws a large fraction of energy from the battery. We show that
lightweight information such as app name can be utilized to esti-
mate the color histogram and henceforth the OLED display power
consumption. A simple clustering method achieves an overall clus-
tering accuracy of 81% and a potentially even higher energy esti-
mation accuracy.

6 RELATED WORK

Predictability Study of Mobile Devices. In the literature, efforts
have been spent on improving the energy efficiency and app per-
formance of mobile devices using predictive information, such
as predicting smartphone app launch [21], predicting user mobil-
ity [6], predicting network conditions [20], and predicting the user’s
pose [9]. Our work instead investigates the predictability in the
smartwatch context.

Smartwatch Usage. Several prior studies investigated smart-
watch usage. Lyons conducted a user survey to shed light on the
design of smartwatches [14]. Min et al. characterized smartwatch
battery usage based on an online survey involving 17 users [15].
Poyraz et al. conducted a user study to understand the smartwatch
power consumption and user activities [17]. Liu et al. characterized
real smartwatch users’ usage patterns, energy consumption, and
network traffic [13]. Recently, Kolamunna et al. studied SIM-enabled
wearables in the Wild [12]. We instead focus on the predictability
of smartwatch energy consumption, app launch, and display, all
of which are under-explored by prior studies. Also, our user study

Yunsheng Yao, Xing Liu, and Feng Qian

duration (9 months) is much longer than prior studies (e.g., 70 days
for [17] and 106 days for [13]).

Smartphone User Studies. In the past, researchers have launched
various crowd-sourced studies of smartphones (e.g., [7][18][5]).
Compared to them, much fewer user trials have been conducted on
wearable devices such as smartwatches.

7 CONCLUSION AND FUTURE WORK

Through analyzing a 9-month dataset from 27 real smartwatch
users, we quantitatively confirm the good predictability of three
key aspects of smartwatch usage: energy consumption, app launch,
and screen display. Our findings can be leveraged to make resource
management more intelligent and efficient for future wearable
systems. They also facilitate other important services such as app
pre-launching on smartwatches. We plan to leverage the lessons
learned in this work to build a real usage prediction system on
COTS smartwatches. We will then incorporate the predictor into a
wearable energy manager.

REFERENCES

[1] 101 million smartwatches globally by 2020. http://bit.ly/20SEufE.

[2] Monsoon Power Monitor. https://www.msoon.com/LabEquipment/
PowerMonitor/.

[3] Support Vector Machine. https://scikit-learn.org/stable/modules/svm.html.

[4] D.H. Bui, Y. Liu, H. Kim, L. Shin, and F. Zhao. Rethinking energy-performance
trade-off in mobile web page loading. In MobiCom, 2015.

[5] X.Chen, N. Ding, A.Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smartphone
energy drain in the wild: Analysis and implications. SIGMETRICS, 2015.

[6] Y. Chon, E. Talipov, H. Shin, and H. Cha. Mobility prediction-based smartphone
energy optimization for everyday location monitoring. In SenSys, 2011.

[7] H.Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin.
Diversity in smartphone usage. In Proceedings of the 8th international conference
on Mobile systems, applications, and services, pages 179-194. ACM, 2010.

[8] T. Hamatani, M. Elhamshary, A. Uchiyama, and T. Higashino. Fluidmeter: Gaug-
ing the human daily fluid intake using smartwatches. IMWUT/UbiComp, 2018.

[9] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical 360-degree
streaming for smartphones. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services, pages 482-494. ACM,
2018.

[10] J.Hou, X.-Y.Li, P. Zhu, Z. Wang, Y. Wang, J. Qian, and P. Yang. Signspeaker: A real-

time, high-precision smartwatch-based sign language translator. In MobiCom,

2019.

A.Jindal and Y. C. Hu. Differential energy profiling: energy optimization via

diffing similar apps. In OSDI, 2018.

[12] H. Kolamunna, I. Leontiadis, D. Perino, S. Seneviratne, K. Thilakarathna, and

A. Seneviratne. A first look at sim-enabled wearables in the wild. In IMC, 2018.

X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang, and K. Chen. Characterizing

smartwatch usage in the wild. In MobiSys, 2017.

K. Lyons. What can a dumb watch teach a smartwatch?: Informing the design of

smartwatches. In ACM International Symposium on Wearable Computers (ISWC),

2015.

C. Min, S. Kang, C. Yoo, J. Cha, S. Choi, Y. Oh, and]J. Song. Exploring current

practices for battery use and management of smartwatches. In ACM International

Symposium on Wearable Computers (ISWC), 2015.

[16] K. Murugesan and J. Zhang. Hybrid bisect k-means clustering algorithm. In Intl.

Conf. on Business Computing and Global Informatization (BCGIN), 2011.

E. Poyraz and G. Memik. Analyzing power consumption and characterizing user

activities on smartwatches: summary. In Workload Characterization (IISWC), 2016

IEEE International Symposium on, pages 1-2. IEEE, 2016.

[18] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. Web caching on smartphones: ideal vs. reality. In Proceedings
of the 10th international conference on Mobile systems, applications, and services,
pages 127-140. ACM, 2012.

[19] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu. Deepwear: Adaptive local
offloading for on-wearable deep learning. IEEE Transactions on Mobile Computing,
2019.

[20] Q. Xu, S. Mehrotra, Z. Mao, and J. Li. Proteus: network performance forecast for

real-time, interactive mobile applications. In MobiSys, 2013.

T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app launching for mobile

devices using predictive user context. In MobiSys, 2012.

[11

(13

=
&

[15

(17

[21

http://bit.ly/2OSEufE
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://scikit-learn.org/stable/modules/svm.html

	Abstract
	1 Introduction
	2 Background
	3 Predicting Energy Consumption
	4 Predicting App Launches
	5 Predicting Screen Display
	6 Related Work
	7 Conclusion and Future Work
	References

