
Quality-aware Strategies for Optimizing ABR Video Streaming
QoE and Reducing Data Usage

Yanyuan Qin1, Shuai Hao2, Krishna R. Pattipati1, Feng Qian3∗,
Subhabrata Sen2, Bing Wang1, and Chaoqun Yue1

1University of Connecticut 2AT&T Labs - Research 3University of Minnesota

ABSTRACT

Streaming videos over cellular networks is highly challenging. Since
cellular data is a relatively scarce resource, many video and network
providers offer options for users to exercise control over the amount
of data consumed by video streaming. Our study shows that existing
data saving practices for Adaptive Bitrate (ABR) videos are subopti-
mal: they often lead to highly variable video quality and do notmake
the most effective use of the network bandwidth. We identify under-
lying causes for this and propose two novel approaches to achieve
better tradeoffs between video quality and data usage. The first ap-
proach is Chunk-Based Filtering (CBF), which can be retrofitted to
any existing ABR scheme. The second approach is QUality-Aware
Data-efficient streaming (QUAD), a holistic rate adaptation algo-
rithm that is designed ground up. We implement and integrate our
solutions into two video player platforms (dash.js and ExoPlayer),
and conduct thorough evaluations over emulated/commercial cel-
lular networks using real videos. Our evaluations demonstrate that
compared to the state of the art, the two proposed schemes achieve
consistent video quality that is much closer to the user-specified
target, lead to far more efficient data usage, and incur lower stalls.

CCS CONCEPTS

• Information systems →Multimedia streaming;

KEYWORDS

Adaptive Video Streaming; Quality-aware; QoE; Data Saving.

ACM Reference Format:

Yanyuan Qin, Shuai Hao, Krishna R. Pattipati, Feng Qian, Subhabrata Sen,
BingWang, and Chaoqun Yue. 2019. Quality-aware Strategies for Optimizing
ABR Video Streaming QoE and Reducing Data Usage. In 10th ACM Multi-

media Systems Conference (MMSys ’19), June 18–21, 2019, Amherst, MA, USA.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3304109.3306231

1 INTRODUCTION

Mobile video streaming is extremely popular, already accounting for
the bulk of traffic on cellular networks [34]. Ensuring good viewing
experience is important but challenging, especially when streaming

* The work of Feng Qian was done when he was at Indiana University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’19, June 18–21, 2019, Amherst, MA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6297-9/19/06. . . $15.00
https://doi.org/10.1145/3304109.3306231

over cellular networks which can exhibit high bandwidth variabil-
ity, due to the conflicting goals of maximizing quality, minimizing
rebuffering, and minimizing quality changes [12, 24, 29, 35]. Adap-
tive Bitrate (ABR) streaming (mainly using HLS [2] and DASH [15])
has emerged as the de facto over-the-top (OTT) video streaming
technology in industry. On the server side, a video is compressed
into a ladder of multiple independent tracks, each specifying the
same content but with a different bitrate/quality. A track is further
divided into a series of chunks (or segments), each containing data
for a few seconds’ worth of playback. For each chunk position in the
video, the encoded bitrates and hence the picture quality generally
increase from lower to higher tracks. During playback, the client
downloads a manifest file containing the metadata about the differ-
ent tracks and resource requirement (e.g., the peak rate). The ABR
adaptation logic dynamically determines which quality (i.e., from
which track) to fetch for each chunk position in the video, based
on the available network bandwidth and possibly other factors.

This paper attempts to answer the following question: how can
we effectively reduce the bandwidth consumption for mobile video
streaming while minimizing the impact on users’ quality of expe-
rience (QoE)? This is a highly important and practical research
problem since cellular network bandwidth is a relatively scarce re-
source. The average data plan for a U.S. cellular customer is only 2.5
GB per month [13], while streaming just one-hour High Definition
(HD) video on mobile Netflix can consume 3 GB data. Therefore,
the capability to make more efficient use of data while still hitting
quality targets is the key to enabling users to consume more con-
tent within their data budgets without adversely impacting QoE. In
addition, downloading less data for a video session also translates to
lower radio energy consumption, less thermal overhead on mobile
devices, as well as potentially better QoE for other users sharing
the same cellular RAN (radio access network) or base station.

Existing ABR adaptation schemes (§9) focus mainly on maxi-
mizing the video quality and user QoE. While some schemes do
conservatively utilize the bandwidth, their decisions are primarily
driven by QoE impairment concerns such as the possibility of stalls
caused by the potentially inaccurate bandwidth estimation. For
example, when selecting the next chunk, the default adaptation
scheme in ExoPlayer [18] (a popular open-source player that is used
in more than 10000 apps) only considers tracks whose declared bi-
trates are at least 25% lower than the estimated network bandwidth.
Such a design saves data just by being conservative. As we show
later, it can lead to significantly lower quality/QoE (§8.3). Exist-
ing ABR schemes do not explicitly consider bandwidth efficiency
together with quality in making the track selection decisions.

Some mobile network operators and commercial video services
provide users with certain “data saver” options. These options take
either a service-based approach or a network-based approach. The

MMSys’19, June 18–21, 2019, Amherst, MA, USA Y. Qin et al.

former limits the highest level of quality/resolution/bitrate by, for
example, streaming only standard definition (SD) [47] content over
cellular networks. A network-based approach instead limits the net-
work bandwidth. We survey the “quality throttling” mechanisms
used by today’s commercial video content providers for saving
bandwidth for mobile devices, and pinpoint their inefficiencies (§2-
§3). Despite their simplicity, we find such approaches often achieve
tradeoffs between video quality and bandwidth usage that are far
from what viewers desire. A key reason is that for state-of-the-art
encoders (e.g., H.264 [21], H.265 [20] and VP9 [37]), the actual per-
ceived picture quality exhibits significant variability across different
chunks within the same track, for both Constant Bitrate (CBR) and
Variable Bitrate (VBR) encodings. Therefore, a data-saving approach
that simply removes high tracks leads to quality variations. Such
quality variability impairs user QoE, and makes suboptimal use of
the network bandwidth.

To address the drawbacks of the existing practices, we propose
a quality-aware data saving strategy, which provides data savings
while allowing users’ direct control of the video quality. Specifically,
a user selects from multiple quality options (e.g., good, better, best),
and the player will map the selection to a target quality (§3). Within
this strategy, we propose two new schemes that explicitly consider
the bandwidth efficiency by matching the fetched content quality
against a target quality. In this way, the player will avoid fetching
chunks whose qualities are beyond the target quality, leading to
bandwidth savings. Specifically, the two new schemes are:

•Chunk-Based Filtering (CBF).Wepropose a novel, quality-variability
aware scheme called Chunk-Based Filtering (CBF) (§4) that can be
retro-fitted into existing ABR adaptation schemes. Its high-level
idea is as follows. For every chunk position in the video, CBF limits
the choice of the highest quality chunk for ABR rate adaptation
to the chunk whose quality is closest to the target quality. CBF
thereby steers an ABR adaptation scheme to the set of more desir-
able choices (from the perspective of balancing the tradeoff between
the video quality and bandwidth usage), and helps the ABR scheme
achieve better streaming performance than it would by itself. Using
CBF in conjunction with existing ABR adaptation schemes is also at-
tractive from a practical incremental deployment perspective. CBF
has no dependencies on and requires no changes to the complex
ABR adaptation logic, and can be relatively easily inserted into the
existing streaming workflow (§4.3).

•Quality-aware ABRAdaptation. From a performance and bandwidth-
efficiency tradeoff perspective, it is possible to do even better, if the
ABR scheme itself can explicitly integrate the goal of approaching
the target quality into its rate adaptation logic. To this end, we de-
velop QUality-Aware Data-efficient streaming (QUAD), a holistic rate
adaptation algorithm that is designed ground up (§5). QUAD jointly
considers three aspects whenmaking rate adaptation decisions: pac-
ing the selected chunks’ bitrate to the estimated network bandwidth
to prevent stalls, adapting to the target quality to reduce bandwidth
consumption, and minimizing the inter-chunk quality change to
enhance the playback smoothness. QUAD is robust and lightweight
as it is developed upon solid control theoretic foundations.

We implemented CBF and QUAD (§6) in two popular state-of-
the-art open source ABR video players: dash.js [17] and Exo-
Player [18]. Our evaluation of these two techniques uses a diverse

set of real videos and different encoding schemes (VBR and CBR),
under both emulated and real-world LTE networks (§6). The key
evaluation results include the following.

• CBF significantly improves the performance of existing state-
of-the-art ABR schemes (§7). Specifically, after employing CBF as
a prefiltering step, the average deviation from the target quality
is reduced by 37-67%; the average quality variation is reduced by
7-31%; and the data usage is reduced by 34-67% even in challenging
network conditions (in easier conditions with ample bandwidth, the
reduction is even more). We further experimentally demonstrate
that CBF is significantly more effective in steering existing ABR
schemes to more desirable rate adaptation decisions than traditional
service-based or network-based data saving approaches.

•Compared to existing schemes enhancedwith CBF, QUAD achieves
even better performance in approaching the target quality with
low quality variations while still achieving good QoE (§8). For
instance, our evaluation on dash.js shows that, compared to a
state-of-the-art ABR scheme, BOLA-E [43] enhanced with CBF,
QUAD leads to 37% fewer low-quality chunks and 12% reduction
in quality variation. Compared to the default rate adaptation of
ExoPlayer, QUAD reduces the deviation from the target quality by
64%, reduces the number of low-quality chunks by 81%, and reduces
the quality variation by 43%. Compared to an optimized version
of ExoPlayer’s algorithm enhanced with CBF, the corresponding
reductions brought by QUAD are 40%, 46% and 22%, respectively.

2 QUALITY AND BITRATE TRADEOFFS

In this section, we describe the encoding characteristics of both
VBR and CBR videos to motivate our proposed solutions.

2.1 Video Dataset

Our video dataset includes 18 VBR and 4 CBR videos. We consider
both VBR and CBR videos because both are widely used in prac-
tice [49], with the trend of wider adoption of VBR videos thanks to
their many advantages over CBR videos [25]. Each video is around
10 minutes long, and encoded at 6 tracks/levels1 for ABR streaming,
with resolutions of 144p, 240p, 360p, 480p, 720p, and 1080p.

VBR Videos. All the 18 VBR videos were encoded by YouTube
(YouTube has adopted VBR encoding [28]). Four videos, Elephant
Dream (ED), Big Buck Bunny (BBB), Sintel, and Tears of Steel (ToS),
were encoded from publicly available raw videos [48]. Specifically,
we uploaded the raw videos to YouTube and downloaded the en-
coded videos using youtube-dl [51]. These four videos are in the
categories of animation and science fiction. We further downloaded
14 other videos, in a wide range of categories, including sports,
animal, nature, action movies, family drama, comedy, and docu-
mentary, using youtube-dl. All the above videos are encoded using
the H.264 codec [21], with chunk duration of around 5 seconds, con-
sistent with [28] (the encoding is multi-pass; readers can find the
detailed encoding settings in [28]). Ten out of the aforementioned
14 videos were also available in another codec, VP9 [37], encoded
by YouTube. In addition, we further use FFmpeg to encode the four

1We use the terms track and level interchangeably in this paper. Other equivalent terms
include representation and rendition, which are also widely used in the literature.

Quality-aware Strategies for Optimizing ABR Video Streaming QoE and Reducing Data Usage MMSys’19, June 18–21, 2019, Amherst, MA, USA

publicly available videos using a more recent and efficient codec,
H.265 [20], following the “three-pass” encoding in [11].

CBR Videos.We also created CBR encodings for the four pub-
licly available raw videos using FFmpeg [14], a popular open source
encoder. Specifically, we used the one-pass CBR encoder, the default
CBR encoder in FFmpeg, which is often used instead of multi-pass
encoders due to latency considerations, particularly in live stream-
ing. Each video is encoded using H.264 into six tracks (144p to
1080p), and each track is segmented into 5-sec chunks, consistent
with the ABR track configurations of YouTube.2

2.2 Video Quality Metrics

We use two quality metrics, Peak Signal-to-Noise Ratio (PSNR)
and Video Multimethod Assessment Fusion (VMAF) [26]. PSNR is
a traditional image quality metric. VMAF is a recently proposed
perceptual quality metric that correlates quality strongly with sub-
jective scores, and has been validated independently in [41]. VMAF
provides different models tailored to various screen sizes, such as
phone and TV. We focus on the VMAF phone model in this paper
since phones are the dominant platform for viewing videos over
cellular networks. A VMAF score is between 0 and 100: a score of
0-20 is considered as unacceptable, 20-40 as poor, 40-60 as fair, 60-80
as good, and 80-100 as excellent [26]. Similarly, different ranges
of PSNR values are used to categorize picture qualities [11]. The
aggregate VMAF of a chunk is set as the median VMAF of all the
frames in a chunk (using mean leads to similar values for videos in
our dataset) [33]. The same approach is used for PSNR.

To calculate PSNR and VMAF for a video, we need a reference
video, i.e., a pristine high quality copy of the video against which to
compute these metrics. For the four VBR and CBR videos that were
encoded using the publicly available raw videos, the corresponding
raw videos are used as the reference videos. For the other VBR
videos downloaded from YouTube, we do not have the raw video
footage, and use the top track (1080p) as the reference track to
measure the video quality of the lower tracks. To understand the
impact of this approximation, we calculate the quality values for the
four videos that we have raw videos under two options, one with
the raw video and the other with the 1080p track as the reference
video. We find empirically that the latter leads to lower variability
across the chunks in the same track for both PSNR and VMAF, a
point that we will return to in §2.3.

2.3 Perceptual Quality vs. Encoding Bitrate

We first use an example video to illustrate the tradeoffs between
quality and bitrate, and then describe the observations across the
video dataset. Figures 1(a) and (b) plot quality versus bitrate for a
VBR video (with 123 chunks, each of 5-sec duration, and 6 tracks),
using VMAF and PSNR as the quality metric, respectively. In these
figures, different colors represent the chunks in the different tracks;
the black curve shows the average quality versus average bitrate for
each track. We see a diminishing gain in increasing bitrate on qual-
ity (note the log scale in x-axis), consistent with the observations

2As an example, the command for encoding an input video into a 1080p track
is ffmpeg -i inputvideo -b:v 2500k -minrate 2500k -maxrate
2500k -bufsize 2500k -r 24 -profile:v high -x264-params
nal-hrd=cbr:keyint=120 :min-keyint=120:scenecut=0 -vcodec
libx264 -vf scale=1920:1080 -preset fast output.mp4.

101 102 103 104

Bitrate (kbps)

0
10
20
30
40
50
60
70
80
90

100

VM
AF

(a) VBR, VMAF

101 102 103 104

Bitrate (kbps)

20

30

40

50

PS
N

R
 (d

B)

(b) VBR, PSNR

101 102 103 104

Bitrate (kbps)

0
10
20
30
40
50
60
70
80
90

100

VM
AF

(c) CBR, VMAF

101 102 103 104

Bitrate (kbps)

20

30

40

50

PS
N

R
 (d

B)

(d) CBR, PSNR

Figure 1: Quality vs. bitrate for one video (ED).

0 500 1000 1500
Bitrate (kbps)

50

60

70

80

90

100

VM
AF

ED
BBB
ToS
Sintel
Animal
Sports
Nature
Moive
WLY
Kedi
Masquerade
Mind
Party
Savvy
Stepup
The Thing
Youth
King

(a) YouTube VBR (H264)

400 600 800 1000
Bitrate (kbps)

50

60

70

80

90

100

VM
AF

ED
BBB
ToS
Sintel

(b) FFmpeg CBR (H264)

Figure 2: Quality vs. bitrate for track 4 (480p).

in [10]. Furthermore, even under VBR encoding, the chunks in the
same track have significantly variable perceptual quality (a VMAF
difference of 6 or more would be noticeable to a viewer [10, 36]).
Specifically, for a track, the standard deviation of quality across the
chunks varies from 2 to 14 for VMAF, 4.1 to 5.4 in PSNR (note PSNR
values in log scale), with the middle tracks exhibiting more vari-
ability. We make similar observations for CBR video. Figures 1(c)
and (d) plot VMAF quality versus bitrate for a CBR video, where all
the chunks in same track have similar bitrates.

Fig. 2 plots the quality (in VMAF) and bitrate variations for track
4 for all the videos we consider (18 VBR videos in Fig. 2(a) and 4
CBR videos in Fig. 2(b)); the results under PSNR show a similar
trend. Each video is represented by two error bars, representing
the 1st and 99th percentile in quality and bitrate, respectively. We
see the same two observations hold for all the videos we consider.
Note that Fig. 2(a) includes the 14 VBR videos for which we use the
1080p tracks as the reference videos (due to unavailability of the
raw videos), which tend to underestimate the quality variability
across the chunks in the same track (see empirical observations in
§2.2). We see significant variability even with the underestimation.

The above results are for H.264 [21] videos. To ensure that the
above observations are general, we further investigate the quality
and bitrate relationships for other encoders and content. Specifically,
we examine (i) H.265 [20], a more recent and efficient codec than

MMSys’19, June 18–21, 2019, Amherst, MA, USA Y. Qin et al.

Option Top Track Declared Bitrate Resolution

Data saver 3 120kbps 288p
Good 6 450kbps 360p
Better 7 650kbps 396p
Best 8 1000kbps 480p

Table 1: Data saving options in Amazon Prime video.

H.264, using the four publicly available videos, (ii) VP9 [37], another
widely used codec in YouTube, using ten VP9 videos downloaded
from YouTube, and (iii) Twitch, another popular video streaming
service, by selecting five popular videos in different genres based on
the number of viewers. For all the three cases, our results confirm
the same two quality and bitrate relationships observed earlier: (1)
increasing bitrate leads to diminishing gain in quality improvement,
and (2) the chunks in the same track have significantly variable
quality. These two observations are consistent with the results of
Netflix encoded videos [9, 10], indicating that they hold widely
across encoding platforms and videos.

The property that chunks within the same track have highly
variable quality holds obviously for CBR encodings, which encode
the entire video at a relatively fixed bitrate, allocating the same bit
budget to both simple scenes (i.e., low-motion or low-complexity
scenes) and complex scenes (i.e., high-motion or high-complexity
scenes). The fact that it also holds for VBR is somewhat counterin-
tuitive since VBR allocates bits according to scene complexity to
achieve a more consistent quality throughout a track. Part of the
reason is the inherent complexity of encoding and the difficulty of
handling scenes of diverse complexities [10, 28].

3 REDUCING DATA USAGE

The diminishing gains in increasing bitrate on quality improvement
demonstrated in the previous section indicate that an ABR logic
that simply aims to maximize quality is not bandwidth efficient. In
the following, we first describe the current data saving practices
and show that they are inefficient. We then propose a quality-aware
strategy for reducing data usage.

3.1 Current Data Saving Practices

Certain cellular network operators provide users with options to
limit the network bandwidth for a streaming session (e.g., [4, 45]).
The rationale is that the bandwidth cap may lead an ABR player to
avoid bandwidth-consuming High-Definition (HD) tracks so as to
save data.

Various commercial video streaming services have also provided
users with options to save data. For instance, the YouTube phone
app provides an option called “Play HD on Wi-Fi only”, i.e., only
Standard Definition (SD) videos will be streamed over cellular net-
works. To understand the behavior of this option, we stream eight
videos in different categories using the YouTube app over a com-
mercial LTE network. We observe that, when the option is on, even
if the network bandwidth is very high (over tens of Mbps), the 480p
track is selected throughout the video. The fact that the selected
tracks never exceed 480p despite significantly higher bandwidth
indicates that the data saving is achieved by capping the top track to
the 480p track. Henceforth, we refer to this practice as Track-based
Filtering (TBF). We find that data saving options in the Amazon
Prime Video app are also achieved by capping the top track. Table 1

summarizes the measurement results, showing the top track for the
four options varies from track 3 to 8.

The above two current practices both have drawbacks. The
network-based approach forces an ABR scheme to choose lower
tracks due to the network bandwidth limit. It provides no explicit
control on what quality will be chosen for a particular chunk po-
sition, thus leading to highly variable quality across the rendered
chunks (§7.2). The practice of TBF does not account for the high
quality variability across chunks within the same track. For exam-
ple, the purple points in Fig.1(b) represent chunks encoded at track
4 (or 480p). When using TBF with 480p as top track, the quality for
some chunk positions is lower than 60 (i.e., the threshold for good
quality in VMAF [26]), no matter what ABR scheme is being used

and how much network bandwidth is available.

3.2 Quality-aware Data Saving

To address the drawbacks of the current data saving practices,
we propose a quality-aware strategy for reducing data usage. We
assume that a user is providedwithmultiple viewing quality options
(e.g., good, better, best), with the understanding that the saving is
higher under a lower viewing quality option and vice versa. For an
option chosen by a user, the player will map it to a particular quality
value, referred to as target quality, and the goal of the ABR logic is
to maintain the quality to be close to the target quality, subject to
the network bandwidth constraints. In contrast to the current data
saving practices, the above target quality based strategy provides
data savings while directly controlling the quality level.

The target quality can be specified in terms of a wide range of
perceptual quality metrics. While there is no single agreed-upon
way of defining a good perceptual quality, existing literature has
established certain metrics, e.g., through threshold values in VMAF
and PSNR (see §2.2). As an example, VMAF values of 60 and 80 are
the thresholds for “good” and “very good” quality, respectively [26].
The player can set the target quality in VMAF values based on the
viewing quality option that a user chooses: when the “good”, “bet-
ter”, “best” option is chosen, the target quality is set to VMAF 60, 70,
80, respectively. Users do not need to numerically specify the target
quality. Instead, they only need to select a desired viewing quality
option such as good/better/best—similar to the current practice in
commercial streaming systems. For a given video, the quality met-
rics such as PSNR and VMAF can be calculated by the server after
the video is encoded, and then shared with the client. In addition, a
video player can also automatically decide the target quality based
on the user’s cellular data plan, the cellular data budget, the video
content type, and the user’s historical preferences. Furthermore,
the target quality can be changed over time during the playback;
our schemes in §4 and §5 can be applied to dynamic target qualities.

4 CHUNK-BASED FILTERING (CBF)

We first describe the CBF approach, and then detail its deployment
scenarios and how to leverage it in ABR streaming.

4.1 CBF Approach

CBF is motivated from the two video quality and bitrate tradeoffs in
§2, i.e., (i) increasing bitrate leads to diminishing gain in improving
quality, and (ii) the chunks in the same track exhibit significantly

Quality-aware Strategies for Optimizing ABR Video Streaming QoE and Reducing Data Usage MMSys’19, June 18–21, 2019, Amherst, MA, USA

0 40 80 120
Chunk index

1

2

3

4

5

6

Tr
ac

k

(a) Top track when applying CBF.

0 40 80 120
Chunk index

40

50

60

70

80

90

100

VM
AF

(b) Quality for top track with CBF.

Figure 3: Illustration of CBF (ED, Qr = 80).

0 40 80 120
Chunk index

40

50

60

70

80

90

100

VM
AF

TBF+ TBF- CBF

(a) Quality for top track

40 50 60 70 80 90 100
VMAF

0

0.2

0.4

0.6

0.8

1

C
D

F

TBF+ TBF- CBF

(b) CDF for quality of top track

Figure 4: CBF, TBF−, and TBF+ (ED, Qr = 80).

variable quality. Specifically, for a given target quality, Qr , CBF
filters the tracks that are undesirable on a per-chunk basis as follows.
For the i-th chunk position, let qi, � denote the quality for track �,
which can be obtained right after the encoding process at the server.
Then, for a given Qr , CBF sets the top level for chunk position
i to �̄i so that the corresponding quality, qi, �̄i , is closest to the
target quality, Qr , among all the tracks for chunk position i (i.e.,
|qi, �̄i −Qr | is the smallest). In other words, for chunk position i , all

the encodings (i.e., tracks) that are above �̄i will not be considered
in ABR streaming.

Fig. 3(a) illustrates CBF using an example. It plots the top track
after filtering by CBF for each chunk position when the target
quality is 80 (VMAF). The video has 6 tracks originally. We see that
the top track after CBF varies from 1 to 6 for the different chunk
positions (with 53% and 39% as track 3 and 4, respectively, and 6%
above 4, and 2% below 3). As an example, for the 29th chunk, the
lowest track (i.e., track 1) is sufficient to achieve the target quality 80.
A manual inspection reveals that this chunk contains very simple
scenes that require less bits to encode. Fig. 3(b) plots the highest
quality variant for each chunk position that CBF retains. We see
that 95% of the chunk positions have top quality within 10% of the
target quality (i.e., between 72 and 88).

4.2 CBF vs. TBF

We next compare CBF and TBF. Specifically, we consider two vari-
ants of TBF as follows. For a video, let Q̃(�) represent the average
quality of all the chunks in track �. Let �− and �+ denote two adja-
cent tracks, �− = �+−1, satisfying that Q̃(�−) ≤ Qr and Q̃(�+) > Qr .
The first variant of TBF, denoted as TBF−, caps the top track to �−,
i.e., it removes all the tracks that are higher than �−. The second
variant of TBF, denoted as TBF+, caps the top track to �+. Clearly,
TBF− is more aggressive in filtering out tracks than TBF+.

Fig. 4(a) plots the quality of the top track for each chunk position
under CBF, TBF−, and TBF+ for one video when the target quality

is 80. For this setting, �− = 3 and �+ = 4. In TBF+, all the tracks
above track 4 (with resolution 480p) are removed, which coincides
with YouTube’s data saving option (§3.1). In Fig. 4(a), the quality for
a given chunk position represents the maximum achievable quality
when the network bandwidth is sufficiently large. We see that the
quality under CBF is overall much closer to the target quality than
that under the two TBF variants. Fig. 4(b) shows the cumulative
distribution function (CDF) corresponding to the quality values
in Fig. 4(a). For TBF− and TBF+, only 56% and 53% of the chunk
positions have quality within 10% of the target quality, compared
to 95% under CBF. We observe similar results as above for other
videos and target quality investigated. It is easy to prove that, for
any chunk position, the top quality under CBF is no farther away
from the target quality than that under the two TBF variants.

4.3 Deployment Scenarios

From a practical perspective, a key advantage of CBF is that it can
be incrementally deployed in the existing DASH and HLS streaming
pipelines at either the server or client side. In both deployment
scenarios, the server does not remove any chunk from its storage.
Rather, it modifies or extends the manifest file that it transmits to
the client. We next describe the two deployment scenarios, and end
the section with a brief description of using CBF in ABR streaming.

Server Side Deployment. Two approaches, called chunk vari-

ant trimming and chunk variant substitution, can be used for server
side deployment. In chunk variant trimming, the server simply
modifies the manifest file so that, for each chunk position, it only
lists the chunk variants that remain after CBF filtering. As an ex-
ample, in Fig. 5(a), for chunk 1, only the three lowest track variants
will be listed in the manifest file. In chunk variant substitution, the
server makes the filtering completely transparent to the client op-
eration by substituting the information for certain chunk variants
as follows. Consider the chunks at position i . Let i .� represent the
chunk at level �. Let l̄ denote the top track after the filtering by CBF.
Then the server modifies the manifest file so that the information
for chunk i .�, � > �̄, is replaced with the information of chunk i .�̄.
In this way, each playback position still has the same number of
levels, and the changes through CBF is transparent to the client.
For example, in Fig. 5(a), for chunk 1, levels 4, 5 and 6 are filtered
according to CBF; the server modifies the manifest file to replace
the information for chunks 1.4, 1.5 and 1.6 with that of 1.3.

We have verified that the above two approaches work in the
context of both DASH and HLS protocols and common packag-
ing formats such as Fragmented MP4 and MPEG-2 TS [2, 15]. The
chunk variant substitution approach clearly works when the media
format does not include separate initialization segments (i.e., each
chunk is self-initializing). It can also be realized for media formats
where separate initialization segments (each containing informa-
tion required to initialize the video decoder to decode a particular
chunk) are included, as long as a proper initialization segment is
specified for each chunk in the manifest file. We have confirmed
through experiments that both DASH and HLS have ways to specify
such associations, and that, when presented with the appropriately
modified manifest file, the player was able to correctly decode and
play the associated video. In DASH, this can be achieved using

MMSys’19, June 18–21, 2019, Amherst, MA, USA Y. Qin et al.

1, 1
1, 2
1, 3
1, 3
1, 3
1, 3

2, 1
2, 2
2, 3
2, 4
2, 5
2, 5

3, 1
3, 2
3, 3
3, 4
3, 5
3, 6

ServerClient

1, 1
1, 2
1, 3
1, 3
1, 3
1, 3

2, 1
2, 2
2, 3
2, 4
2, 5
2, 5

3, 1
3, 2
3, 3
3, 4
3, 5
3, 6

(a) Server side deployment

1, 1
1, 2
1, 3
1, 4
1, 5
1, 6

2, 1
2, 2
2, 3
2, 4
2, 5
2, 6

3, 1
3, 2
3, 3
3, 4
3, 5
3, 6

1, 1
1, 2
1, 3
1, 4
1, 5
1, 6

2, 1
2, 2
2, 3
2, 4
2, 5
2, 6

3, 1
3, 2
3, 3
3, 4
3, 5
3, 6

ServerClient Quality Info

(b) Client side deployment

Figure 5: Illustration of CBF deployment.

“Period" construct [15]. In HLS, this can be achieved through extra
“EXT-X-MAP" tags [2].

Client Side Deployment. When CBF is deployed at the client,
the server further needs to transmit the quality information for
each chunk to the client, e.g., by including the information in the
manifest file, as our prototype implementation of CBF in two ABR
streaming platforms (§6). The client, when making rate adaptation
decision for a chunk position, will exclude the levels that are above
the top track for that chunk position (illustrate as shaded chunks
in Fig. 5(b)). Note that while quality metrics can be carried in the
media file, e.g., following the ISO standard [16], for rate adaptation
purposes, the quality information needs to be known to the client
beforehand to assist the decision making, instead of extracting after
a chunk is downloaded. Therefore, our implementation embeds the
quality information in the manifest file instead of the media file.

Leveraging CBF in ABR Streaming. CBF can be retrofitted to,
and improve the performance and data efficiency of existing ABR
schemes that may not be quality-aware themselves. This can be
achieved either through server-side or client-side deployment of
CBF. Specifically, under server-side deployment of CBF, an existing
ABR scheme simply selects from the remaining levels for each
chunk position. The scheme does not need to leverage or even be
aware of any quality information. It can simply aim at maximizing
the bitrate (as an indirect way of maximizing the quality) with other
QoE considerations, as in most existing schemes. Under client-side
deployment of CBF, the client can add a function that applies CBF,
and then pass the information of the remaining tracks for a chunk
position to an existing ABR algorithm.

5 GROUNDS-UP DESIGN: QUAD

Besides integrating CBF into existing ABR schemes, another ap-
proach to design target quality aware ABR adaptation schemes is
to develop them from the ground up. Such schemes, since explicitly
designed with the target quality in mind, have the potential to out-
perform existing schemes enhanced with CBF. To demonstrate this
approach, we propose one design, called QUAD (QUality Aware
Data-efficient streaming), based on control theory. QUAD explic-
itly integrates the goal of approaching the target quality into its
online optimization framework. As a result, it is more capable of
maintaining the target quality, and more adaptive to the fluctuating
network conditions compared to using CBF with existing schemes.

As shown in Fig. 6, QUAD takes a target quality as input, and
leverages an optimization formulation and feedback control to
optimize the QoE metrics while approaching the target quality.

Target Quality based Optimization. The optimization formu-
lation below aims to make the chosen chunks’ quality approach the

Target quality

Target
buffer level

OptimizationFeedback
control

Segment
quality

Segment
size

Player

Throughput
predictor

Figure 6: Design diagram of QUAD.

target quality while minimizing rebuffering and quality changes.
Let �t denote the track number selected at time t . Let Rt (�t) denote
the corresponding bitrate of the selected chunk. We use Rt (�t) in-
stead of R(�t) to accommodate VBR encoding whose bitrate is both
a function of �t and time t since the bitrate can vary significantly
even within a track. The client selects �t from the set of levels that
remains after CBF. The optimization problem is to determine the
track, �t , so that the following objective function is minimized:

J (�t) =

���max
(
0,utRt (�t) − Ĉt

)���2 + α ‖Qr −Qt (�t)‖
2

+ η ‖Qt (�t) −Qt−1(�t−1)‖
2 , (1)

where ut is the controller output and Ĉt is the estimated link band-
width at time t , α > 0 and η > 0 are parameters for the second and
third terms, respectively, Qr is the target quality specified by the
user, Qt (�t) denotes the quality of the chunk at track �t for time t ,
and Qt−1(�t−1) represents the quality of the previous chunk (here
we slightly abuse the notation by using t to represent the index
of the chunk for time t and use t − 1 to represent the index of the
previous chunk).

The formulation in Eq. (1) is a least-square optimization problem.
In the first term, utRt (�t) represents the bandwidth requirement
of the selected track, derived from the feedback control that we
will explain shortly. For now readers can regard it as a black box.
The first term is zero if the bandwidth requirement of the selected
track is no more than the estimated network bandwidth; otherwise,
a stall may potentially occur, so it incurs a penalty that equals
to the amount of bandwidth that is exceeded by the bandwidth
requirement. The second term depends on how much the chosen
quality for the chunk deviates from the target quality. The sum of
the first and second terms allows the chosen track to be as close
to the target quality as possible, while does not overly exceed the
network bandwidth (to avoid stalls). The last term penalizes quality
changes between two adjacent chunks, in order to maintain a more
consistent quality and smooth playback.

We apply normalization in Eq. (1) since the first term is of a
different unit from the second and third terms. Specifically, we
normalize all the three terms to be unitless as follows. The first
term is normalized by Ĉt , the estimated bandwidth, and the other
two terms are normalized byQr (since QUAD selects from the tracks
that remain after CBF, the maximum quality is approximately Qr).
In Eq. (1), α and η represent the weights for the second and third
terms, respectively. We set both of them to 1 since all the three
terms in Eq. (1) are important QoE metrics.

We see from Eq. (1) that choosing �t above the target quality Qr

is not beneficial in minimizing the objective function. Therefore, we
may apply CBF before solving the optimization problem to reduce
the problem space and improve the runtime efficiency. Let Lt be
the set of track levels for chunk t (retained after CBF). We can find

Quality-aware Strategies for Optimizing ABR Video Streaming QoE and Reducing Data Usage MMSys’19, June 18–21, 2019, Amherst, MA, USA

the optimal solution to (1) by evaluating Eq. (1) using all possible
values of Lt , leading to computational overheadO(|Lt |). In §8, we
show that QUAD is very lightweight using our implementation.

Feedback Control Block. In the first term in (1), utRt (�t), is
derived from the feedback control block shown in Fig. 6. We use PID
control [3] as the underlying control framework since it is simple
and robust for ABR streaming [39]. Specifically, the PID control
block works by continuously monitoring the difference between the
target and current buffer levels of the video player, and adjusting
the control signal to maintain the target buffer level, which helps
to avoid stalls. We define the controller output, ut , as:

ut =
Ct

Rt (�t)
, (2)

where Ct denotes the network bandwidth at time t , and Rt (�t)
denotes the bitrate of the chunk selected for time t . The control
policy is defined as:

ut = Kp (xr − xt) + Ki

∫ t

0
(xr − xτ)dτ + 1(xt − Δ) (3)

where Kp and Ki denote respectively the parameters for propor-
tional and integral control (two key parameters in PID control), xr
is the target buffer level, xt is the current buffer level (in seconds)
at time t , Δ denotes the playback duration of a chunk, and the last
term, 1(xt − Δ), is an indicator function (1 when xt ≥ Δ and 0 oth-
erwise), which makes the feedback control system linear, and hence
easier to control and analyze. From (2), we derive Ct = utRt (�t)
and plug it into (1).

Further Reducing Rebuffering. To avoid rebuffering when
the current buffer level is low, we further use a heuristic. Specifically,
if xt < 4Δ, i.e., there are less than four chunks in the buffer, then
the track is selected as min(�f , Ĉt /ut), where �f is the lowest track
with fair quality for that chunk position. In other words, when the
current buffer level is low, we ignore the goals of achieving the
target quality and reducing quality changes (i.e., the last two terms
in (1)), and only consider the first term (to reduce the risk of stalls).

In that case, we first select the track based on Ĉt /ut . Since Ĉt can
be an overestimate of the actual network bandwidth, we further
bound the selected track to be no more than level �f . For the videos
that we use in our evaluation (see §6), we set �f to 2, which has
significantly higher quality than track 1.

6 IMPLEMENTATION & EVALUATION SETUP

Implementation.We implemented client-based CBF and QUAD
in two popular players, dash.js [17] and ExoPlayer [18]. We made
a set of non-trivial changes. First, we included the quality informa-
tion of each chunk in the manifest file. We then modified dash.js
and ExoPlayer so that the chunk quality information can be passed
to the ABR logic. We also implemented a new module cbf.js to
realize CBF, and a new rate adaptation module quad.js to real-
ize QUAD in dash.js. In ExoPlayer, we created two new classes,
cbf.java and quad.java, for CBF and QUAD. The total number of
LoC that is involved in the above changes is 336 in dash.js and 396
in ExoPlayer. In dash.js, we developed a bandwidth estimation
module that responds to playback progress events and estimates
network throughput using the harmonic mean of the last 5 chunks.

Evaluation Setup. Our evaluations use a combination of con-
trolled lab experiments with our implementations in dash.js and

ExoPlayer, as well as simulations, all driven by real-world network
bandwidth traces collected from commercial cellular networks. This
methodology allows repeatable experiments and to evaluate differ-
ent schemes under identical settings. In §8.4, we also run in-the-wild
tests using ExoPlayer on a phone over an LTE network.

NetworkTraces andVideos.We collected a total of 42 hours of
network traces over two large commercial LTE networks in the U.S.
Our traces consist of per-second network bandwidth measurements,
which are collected on a phone, by recording the throughput of a
large file downloading from a well-provisioned server. They cover
a diverse set of scenarios, including different time of day, different
locations, and different movement speeds (stationary, walking, local
driving, and highway driving). We selected 50 challenging traces,
each of 700 seconds, with the average network bandwidth below 1
Mbps. The reason for choosing such traces is because even with tar-
get quality of 80 (in VMAF, regarded as very good quality [26], the
highest quality we evaluate), the average bandwidth requirement
is below 1 Mbps (varies from 500 to 800 kbps) for the videos we use.
Using higher bandwidth traces will diminish the differences among
different schemes; these low-bandwidth traces, measured from com-
mercial cellular networks, represent challenging conditions that do
occur in real networks, e.g., when the network is congested or the
signal is poor. We use 4 VBR and 4 CBR videos in our evaluation.
They are encoded using the four raw videos (ED, BBB, Sintel, ToS)
that we have access to (see §2.1), and hence we can calculate the
perceptual quality using raw videos as the reference. The results
in §7 and §8 focus on VBR videos; the results for CBR videos are
consistent and omitted due to space.

CBF with Existing ABR Schemes. We use CBF as a prefilter
for the following state-of-the-art rate adaptation schemes: (i) Ro-
bustMPC [50], which is a well-known scheme based on model pre-
dictive control. (ii) PANDA/CQ [27], which directly incorporates
video quality information in ABR streaming. It maximizes the mini-
mum quality for the next N chunks, which achieves better fairness
(in terms of quality) among multiple chunks. (iii) BOLA-E [43, 44],
which selects the bitrate to maximize a utility function considering
both rebuffering and delivered bitrate. (iv) ExoPlayer’s ABR adap-
tation [18], referred to as Exo henceforth, which is essentially a rate
based logic, i.e., selecting the track based on bandwidth estimation.
The results for RobustMPC and PANDA/CQ are obtained through
trace-driven simulation; the evaluation involving BOLA-E and Ex-
oPlayer ABR logic is done using open source implementation in
dash.js and ExoPlayer, respectively.

Offline Optimal Scheme.We further use an offline optimal so-
lution as a baseline to evaluate the performance of various schemes.
This offline scheme assumes that the entire network bandwidth is
known beforehand. It considers three QoE metrics related to target
quality, quality changes, and stalls. Specifically, for a video with n
chunks, it selects tracks �1, . . . , �n to minimize

J (�1, . . . , �n) =

n∑
t=1

(Qr −Qt (�t))
2 +

n−1∑
t=1

(Qt+1(�t+1) −Qt (�t))
2

+ γTr (�1, . . . , �n)
where Qr is the target quality, Qt (�t) is the quality for �t , and
Tr (�1, . . . , �n) is the rebuffering duration, and γ is the weight for
rebuffering. The results below use γ = 1002, i.e., we penalize each
second of rebuffering with square of the maximum VMAF quality.

MMSys’19, June 18–21, 2019, Amherst, MA, USA Y. Qin et al.

ABR Configurations. Following practices in commercial pro-
duction players [49], we set the player to start the playback when
two chunks are downloaded into the buffer. The track for the first
chunk is selected to be the middle track (i.e., track 3). Unless other-
wise stated, we use the harmonic mean of the average download
throughout for the past 5 chunks as the bandwidth prediction, as
it has been shown to be robust to measurement outliers [22, 50].
For the results using ExoPlayer, the bandwidth prediction uses the
built-in sliding percentile technique [18]. Unless otherwise stated,
for all schemes, we set the maximum client-side buffer size to 120
seconds. This is reasonable for Video on Demand (VOD) stream-
ing, and is consistent with existing practices that set the maximum
buffer limit to hundreds of seconds [17, 19, 49]. An ABR schememay
use thresholds to control when to stop and resume downloading
based on the buffer level. When comparing with another scheme,
we ensure that our schemes use the same thresholds as used in
that scheme. For QUAD, the controller parameters, Kp and Ki , are
selected by adopting the methodology outlined in [39]. Specifically,
we varied Kp and Ki , and confirmed that a wide range of Kp and
Ki values lead to good performance.

Perceptual Quality Metric. We measure video quality using
VMAF (§2). Specifically, we use VMAF phone model (instead of TV
model) given our focus on cellular networks. In the testing, we as-
sume that a user selects from three quality options, good/better/best.
Correspondingly, the player maps these quality options to VMAF
values of 60 (for “good”), 70 (for “better”), and 80 (for “best”).

Performance Metrics.We use five metrics: four for measuring
different aspects of user QoE and one for measuring data usage.
All metrics are computed with respect to the delivered video, i.e.,
considering the chunks that have been downloaded and played
back. The metrics are listed as follows. (i) Quality of all the chunks:
measures how the quality of each chunk differs from the target
quality. (ii) Low-quality chunk percentage: measures the proportion
of the chunks that were selected with low quality during a stream-
ing session. The reason for using this metric is because human eyes
are sensitive to bad quality chunks [33]. We identify VMAF values
below 40 as low-quality based on [26]. (iii) Rebuffering duration:
measures the total rebuffering/stall time in a streaming session. (iv)
Average quality change per chunk: defined as the average quality
difference of two consecutive chunks in playback order for a stream-
ing session (since human eyes are more sensitive to level changes
in adjacent chunks). (v) Data usage: measures the total amount
of data downloaded for a streaming session. For metrics (ii)-(v), a
lower value is preferable; for (i), we measure how close it is to the
target quality. In addition to the above metrics, we further explored
the number of stalls during a session in various cases. Our results
show that using CBF in existing schemes reduces the number of
stalls, and QUAD leads to fewer stalls compared to existing scheme
enhanced with CBF in almost all the cases.

7 EVALUATION EXISTING ABR SCHEMES
ENHANCEDWITH CBF

Weevaluate the performance of adding CBF to existingABR schemes.
We focus on two existing schemes, RobustMPC and PANDA/CQ.
The performance of other schemes with CBF is deferred to §8.

Table 2: RobustMPC vs. RobustMPC+CBF.

Video

Avg. dev.
from
target
quality

% of traces
w/ > 20%
low-qual.
chunks

Avg.
stall
dura.
(s)

Avg.
quality
change

Data
usage
(MB)

V
B
R
,6
0 ED 25, 9 48%, 10% 8, 0 13, 9 39, 19

BBB 27, 9 37%, 8% 6, 0 14, 11 36, 14
Sintel 28, 11 6%, 0% 8, 0 10, 12 55, 18
ToS 26, 14 56%, 40% 5, 0 13, 12 46, 22

V
B
R
,8
0 ED 23, 15 48%, 12% 8, 2 13, 10 39, 28

BBB 22, 14 37%, 8% 6, 1 14, 13 36, 21
Sintel 19, 9 6%, 0% 8, 0 10, 9 55, 29
ToS 24, 16 56%, 21% 5, 2 13, 10 46, 35

* The two numbers in each cell are the results for RobustMPC
and RobustMPC+CBF, respectively.

7.1 Benefits of CBF
Fig. 7 shows the performance of RobustMPC and PANDA/CQ with
and without CBF for one video across the network traces when the
target quality is 80. The results for the five performance metrics
are shown in the five subplots in the figure: the first subplot is
the CDF across individual chunks across all runs; the rest four
are CDFs across runs, with each run corresponding to a different
network trace. We observe that CBF improves performance for
both ABR schemes, across all metrics. Specifically, compared to the
original schemes, adding CBF leads the quality to be closer to the
target quality, and reduces the percentage of low-quality chunks,
the quality changes, rebuffering, and data usage.

Table 2 summarizes the results for four VBR videos for Ro-
bustMPC with and without CBF for target quality of 60 and 80,
respectively. The first column is the average deviation from the
target quality across all the network traces; the value for one trace
is (

∑
|qi −Qr |)/n, where qi is the quality of chunk i in the rendered

video,Qr is the target quality, and n is the number of chunks in the
video. The second column shows the percentage of the traces that
have more than 20% of low-quality chunks. The third column shows
the average rebuffering duration for the traces where either case
(i.e., with or without CBF) has rebuffering. The last two columns
show the average quality changes and the data usage, averaged
across the network traces. We see that CBF reduces the deviation
from the target quality by 37-67%, reduces the number of traces
with frequent low-quality chunks by 6-42%, and reduces the aver-
age quality change by 7-31%. For many videos, across all network
traces, using CBF leads to no stalls compared to substantial amount
of stalls without CBF. The data usage with CBF is 34-67% lower
than that without CBF. In the extreme case when the bandwidth is
sufficiently high, RobustMPC without CBF will choose the highest
track (i.e., track 6). The data usage for the four videos will be 203,
179, 240, and 209 MB respectively, 5.6-7.5 times higher than the
corresponding values with CBF under target quality 80 (the ratios
are even higher for target quality 60).

We see similar results for PANDA/CQwith and without CBF. The
above results demonstrate that CBF can significantly improve the
performance of existing ABR schemes by prefiltering the chunks
whose qualities are higher than the target quality, and hence steer-
ing the schemes to the set of more desirable choices.

Quality-aware Strategies for Optimizing ABR Video Streaming QoE and Reducing Data Usage MMSys’19, June 18–21, 2019, Amherst, MA, USA

0 20 40 60 80 100
Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

RobustMPC
RobustMPC+CBF
PANDACQ
PANDACQ+CBF

0 20 40
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 50 100 150
Total rebuffering (s)

0.4

0.6

0.8

1

C
D

F

5 10 15 20
Avg quality change (/chunk)

0

0.2

0.4

0.6

0.8

1

C
D

F

20 40 60 80
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 7: Two existing ABR schemes with and without CBF (ED, YouTube encoded, target quality 80).

0 20 40 60 80 100
Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

RobustMPC+CBF
RobustMPC cap
RobustMPC+CBF cap

0 10 20 30 40
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60 80
Total rebuffering (s)

0.4

0.6

0.8

1

C
D

F

5 10 15
Avg quality change (/chunk)

0

0.2

0.4

0.6

0.8

1

C
D

F

20 30 40 50 60
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 8: CBF versus capping network bandwidth (ED, YouTube encoded, target quality 80).

7.2 CBF vs. Network Bandwidth Cap
We now compare CBF with an existing practice for saving data by
capping network bandwidth (§3.1). Specifically, for an existing ABR
scheme, we consider three cases: (i) we assume that the cellular
network provider caps the network bandwidth to 1.5 Mbps; (ii)
there is no cap on the network bandwidth, while the scheme is used
together with CBF; and (iii) there is a bandwidth cap and the scheme
is used with CBF. Since the network bandwidth of some traces is
low and imposing the constraint of 1.5 Mbps leads to little impact,
we choose a subset of network traces where the cap meaningfully
changes the available bandwidth. Specifically, a network trace is
chosen if the bandwidth estimated using a window of 1 second is
larger than 1.5 Mbps for at least 10% of the time. The results below
are obtained from 20 traces selected as above.

Fig. 8 shows the results for RobustMPC with target quality 80;
the results for PANDA/CQ show a similar trend. We see that the
two variants with CBF achieve similar performance. Both of them
significantly outperform the other variant (i.e., with bandwidth cap
but no CBF) in all performance metrics. The results demonstrate the
effectiveness of CBF compared to the network bandwidth capping
approach. They also indicate that CBF can co-exist with the network
bandwidth capping approach. The above results are for one video
with target quality 80. We observe similar results for other videos
and target qualities. For lower target qualities (i.e., 60 and 70), we
observe that CBF achieves even better performance.

7.3 CBF vs. TBF
We now compare CBF with TBF, which is used by commercial
streaming services such as YouTube and Amazon for reducing data
usage (see §3.1). Specifically, we consider two variants of TBF, i.e.,
TBF− and TBF+ (see §4.2).

Fig. 9 plots the performance of RobustMPC with CBF, and with
the two TBF variants, referred to as RobustMPC− and RobustMPC+.
The results are for one VBR video when the target quality is 80.
For this setting, the top track in RobustMPC− and RobustMPC+ is
track 3 and 4, respectively. We make the following observations. (i)
RobustMPC− is quite conservative. It provides low rebuffering time.
However, the negative side is that it undershoots the target quality
(its average deviation from the target quality is 20 VMAF points

across the chunks, compared to 15 under RobustMPC+CBF), and
leads to a higher percentage of low-quality chunks (it has at least
10% low-quality chunks for 100% of the traces, compared to 58%
and 68% of the traces under RobustMPC+CBF and RobustMPC+,
respectively). (ii) RobustMPC+, on the other hand, is too aggres-
sive. It overshoots the target quality (it exceeds the target quality
in 50% of the chunks, compared to 30% under RobustMPC+CBF),
incurs the highest rebuffering time, and consumes the highest net-
work bandwidth among the three schemes. Also, it results in highly
variable quality by choosing high quality for some chunks while
leaving a higher percentage of chunks with low quality. (iii) Ro-
bustMPC+CBF strikes a better balance among the aforementioned
factors. It also achieves a quality that is closest to the target quality.
We observe similar results for other videos and target qualities. We
further compare the three variants of PANDA/CQ and observe that
PANDA/CQ+CBF achieves better performance than the others. The
reason, as explained in §4.2, is that compared to TBF, CBF filters
out chunks at a finer granularity (on the basis of chunks instead of
tracks), thus allowing it to make better choices.

8 EVALUATION OF QUAD

In this section, we compare QUAD and existing schemes enhanced
with CBF. We also evaluate them in dash.js and ExoPlayer.

8.1 QUAD vs. CBF
Fig. 10 plots the performance of QUAD and two existing schemes
(RobustMPC and PANDA/CQ) with CBF for two videos, based on
trace-driven simulations. It also plots the results of the offline opti-
mal scheme (see §6). We observe that for all five metrics except the
data usage, QUAD achieves performance closest to that of the offline
optimal; for data usage, the offline optimal uses more data than
other schemes, consistent with the best quality that it achieves.
QUAD outperforms RobustMPC+CBF and PANDA/CQ+CBF for
both videos in Fig. 10. For video BBB (Fig. 10 bottom row), while
RobustMPC+CBF has similar rebuffering as QUAD, it leads to a
noticeably worse quality (the average deviation from the target
quality is 14 VMAF points across the runs under RobustMPC+CBF,
and 10 under QUAD). For video ED (Fig. 10 top row), the overall
quality of the two schemes is similar, while RobustMPC+CBF has

MMSys’19, June 18–21, 2019, Amherst, MA, USA Y. Qin et al.

0 20 40 60 80 100
Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

RobustMPC+

RobustMPC-

RobustMPC+CBF

0 10 20 30 40
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60
Total rebuffering (s)

0.4

0.6

0.8

1

C
D

F

5 10 15 20
Avg quality change (/chunk)

0

0.2

0.4

0.6

0.8

1

C
D

F

20 30 40 50 60
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 9: RobustMPC with CBF vs TBF (ToS, YouTube encoded, target quality 80).

0 20 40 60 80 100
Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

RobustMPC+CBF
PANDACQ+CBF
QUAD
OPT

0 10 20 30 40
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60
Total rebuffering (s)

0.4

0.6

0.8

1

C
D

F

0 5 10 15 20
Avg quality change (/chunk)

0

0.2

0.4

0.6

0.8

1

C
D

F

20 30 40 50 60
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60 80 100
Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

RobustMPC+CBF
PANDACQ+CBF
QUAD
OPT

0 10 20 30 40
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60
Total rebuffering (s)

0.4

0.6

0.8

1
C

D
F

0 5 10 15 20
Avg quality change (/chunk)

0

0.2

0.4

0.6

0.8

1

C
D

F

15 20 25 30 35
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 10: QUAD vs. two existing schemes with CBF (ED, BBB, YouTube encoded, target quality 80).

more rebuffering than QUAD (it has rebuffering in 23% of the runs,
compared to only 4% in QUAD). For both videos, the average quality
change per chunk under QUAD is much lower compared to Ro-
bustMPC+CBF: 7 under QUAD for both videos, compared to 10 and
13 under RobustMPC+CBF. The overall quality of PANDA/CQ+CBF
is comparable to that of QUAD for both videos, but has significantly
more rebuffering, higher quality changes, and uses more data.

8.2 dash.js based Evaluation
Using our developed QUAD in dash.js (version 2.4.1), we compare
its performance with BOLA-E [44] and BOLA-E+CBF. The original
BOLA-E design takes a single bitrate rate for each track, which is
suitable for CBR videos; for VBR videos, we improved the design
by using the actual chunk sizes in the ABR logic based on [44].
Our evaluation below uses two computers (Ubuntu 12.04 LTS, CPU
Intel Core 2 Duo, 4GB memory) with a 100 Mbps direct network
connection to emulate the video server (Apache httpd) and client.
At the client, we use selenium [42] to run a Google Chrome web
browser and use dash.jsAPIs to collect the streaming performance
data. We use tc to emulate real-world variable mobile network
conditions by “replaying” the network traces (§6). We find QUAD is
very light-weight. With the current prototype, the total execution
time of QUAD is only about 10ms for a 10mins video.

Fig. 11 shows the performance of QUAD, BOLA-E, and BOLA-
E+CBF for one video with target quality 80. We observe that BOLA-
E+CBF significantly outperforms BOLA-E in all performance met-
rics. QUAD further outperforms BOLA-E+CBF in achieving 37%
reduction in average percentage of low-quality chunks and 12%
reduction in average quality changes across the runs. QUAD has
rebuffering in 8% of the runs, compared to 15% under BOLA-E+CBF.
The chunk quality of BOLA-E+CBF is close to that of QUAD, with

data usage close to than that of QUAD. The results for other videos
and target qualities show a similar trend.

8.3 ExoPlayer based Evaluation
We compare the performance of QUAD (using our implementation)
with Exo (the default ABR algorithm, see §6, with and without
CBF) in ExoPlayer (version 2.4.4). The client is an LG V20 phone
(Qualcomm Snapdragon 820, 64GB storage and 4 GB RAM) with
Android 7.0. The experiments are conducted over a WiFi network
(with consistent tens of Mbps bandwidth). We again emulate the 50
challenging cellular network traces (§6) by “replaying” the traces.

Fig. 12 shows the results for two variants of Exo: the first using
the default parameters, and the second (referred to as ExoTuned)
using tuned parameters to improve its quality. In the first variant
(i.e., the default ABR logic), the downloading stops when the buffer
level reaches 30 seconds and resumes when the buffer is less than
15 seconds. In ExoTuned, the parameters are set so that the player
stops downloading when the buffer reaches 120 seconds (the value
we have used for other schemes, see §6), and resumes downloading
when the buffer level drops to 105 seconds. Correspondingly, the
two parameters for QUAD are set to 120 and 105 seconds as well.
We see that ExoTuned indeed achieves better performance com-
pared to Exo since the larger buffer allows the player to download
and store more content in the buffer. For both Exo and ExoTuned,
adding CBF avoids downloading chunks with excessively high qual-
ity, which reduces rebuffering and the data usage (for these two
schemes, adding CBF does not lead to much improvement in quality
since their quality selections are already quite conservative). We
further see that QUAD significantly outperforms all Exo variants.
Compared to Exo, QUAD reduces the average deviation from the
target quality by 64%, reduces the average percentage of low-quality
chunks across all runs by 81%, reduces the average rebuffering (over

Quality-aware Strategies for Optimizing ABR Video Streaming QoE and Reducing Data Usage MMSys’19, June 18–21, 2019, Amherst, MA, USA

0 20 40 60 80 100
Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

BOLA-E
BOLA-E+CBF
QUAD

0 10 20 30 40
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60
Total rebuffering (s)

0.4

0.6

0.8

1

C
D

F

0 5 10 15
Avg quality change (/chunk)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60
Total Data Usage (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 11: QUAD vs. BOLA-E with and without CBF in dash.js (ED, YouTube encoded, target quality 80).

0 20 40 60 80 100
Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

Exo
Exo+CBF
Exo uned
Exo uned+CBF
QUAD

0 20 40 60 80 100
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60
Total rebuffering (s)

0.4

0.6

0.8

1

C
D

F

0 5 10 15
Avg quality change (/chunk)

0

0.5

1

C
D

F

0 20 40 60
Total Data Usage (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 12: QUAD vs. Exo with and without CBF in ExoPlayer (ED, YouTube encoded, target quality 80).

Table 3: In-the-wild tests using ExoPlayer.

Avg. dev.
from
target
quality

Avg. % of
low

quality
chunks

Avg.
stall
dura.
(s)

Avg.
quality
change

Data
usage
(MB)

Low
bw.

19.5±6.1
20.0±6.2
11.9±2.9

17.3±10.2
14.2±8.5
6.5±3.7

2.4±4.6
0
0

7.8±0.9
8.5±1.1
5.6±1.2

26.1±6.5
21.0±4.3
28.8± 3.7

High
bw.

17.9±0.6
3.9±0.1
4.2±0.1

0
0
0

0
0
0

1.5±0.3
5.0±0.1
4.6±0.1

181.0±9.9
47.7±0.6
45.2±0.1

* The three rows in each cell are the results for ExoTuned,
ExoTuned+CBF, and QUAD, respectively.

of the subset of runs where either algorithm has rebuffering) by
86%, and reduces the average quality change across the runs by
43%. Compared to ExoTuned+CBF, the corresponding reductions
in the deviation from the target quality, the average percentage of
low-quality chunks, and the quality changes are 40%, 46%, and 22%,
respectively, albeit QUAD uses more data.

8.4 In-the-wild Tests
So far, our evaluation has been through large-scale trace-driven sim-
ulation and experimentation using real systems. We next present
in-the-wild test results, by running QUAD and ExoTuned (which
outperforms Exo) over a commercial LTE network. The video we
use is ED (YouTube encoded). We consider two settings, one with
poor signal conditions and hence low bandwidth (consistently less
than 1Mbps and unstable), and the other with good signal condi-
tions and hence high bandwidth. The first setting is in a residential
home, and the second one is in an office building. For each setting,
we make 10 runs, each consisting of three schemes (QUAD, Ex-
oTuned and ExoTuned+CBF, in a random order). The results are
shown in Table 3, which lists the mean and standard deviation
across the runs for each case. Under high bandwidth conditions,
compared to ExoTuned alone, we see significant benefits of CBF
and QUAD in reducing data usage and achieving quality close to the
target quality. Under low bandwidth conditions, the results exhibit
more variations due to the fluctuating network bandwidth caused

by the poor signal strength. Despite that, compared to ExoTuned,
we still observe that CBF significantly reduces the percentage of
low-quality chunks, and QUAD achieves the best QoE overall. Exo-
Tuned+CBF and QUAD have no rebuffering, while ExoTuned shows
non-negligible rebuffering duration for the 10-minute video.

9 RELATEDWORK

Improving Video QoE. In addition to the schemes already de-
scribed in §6, QDASH [31] tries to reduce quality switches during
adaptation. BBA [19] proposes adaptation schemes based on client-
side buffer information. PIA [39] designs a PID-based framework to
account for various requirements of ABR streaming. Pensieve [30]
proposes a system that generates ABR algorithms using reinforce-
ment learning. Oboe [1] pre-computes the best possible ABR pa-
rameters for different network conditions and dynamically adapts
the parameters at run-time. CAVA [38] proposes design principles
for VBR-based ABR streaming and a concrete scheme that instanti-
ates these design principles. PANDA/CQ [27] directly incorporates
video quality information in ABR streaming and maximizing QoE
by dynamic programming. The study in [5] outlines the challenges
and open issues in consistent-quality streaming such as the scheme
in [27]. None of the above studies explicitly considers data efficiency.

Reducing Data Usage. A number of studies have proposed
techniques for reducing data in the content encoding process. Chen
et al. [6] propose an optimization framework to identify the opti-
mal encoding bitrates that minimize the average streaming bitrate,
subject to a given lower bound on delivered quality. De Cock et
al. [9] present a constant-slope rate allocation approach to improve
the Bitrate-Distortion rate. Aaron et al. [32] propose per-title en-
coding, i.e., each title should receive a bitrate ladder, tailored to
its complexity characteristics. Katsavounidis et al. [23] develop a
dynamic optimizer framework that searches for optimized encod-
ing parameters. Toni et al. [46] determine the optimal selection of
tracks for encoding. Our work differs from the above by jointly
improving video QoE and reducing data usage in the streaming
process. Therefore, our work is orthogonal to those on reducing
data in the encoding process, and can complement those efforts.

MMSys’19, June 18–21, 2019, Amherst, MA, USA Y. Qin et al.

The study in [7] manages the tradeoff between monthly data
usage and video quality by leveraging the compressibility of videos
and predicting consumer usage behavior throughout a billing cycle.
Our study differs from it in that we consider the data usage and
quality tradeoffs when streaming a video. The study in [40] ob-
serves that, for some chunks, lower bitrate tracks may be of similar
perceptual quality as higher bitrate tracks. Given a set of encoded
ABR tracks, it proposes to perform a server-side chunk replacement
(within the same resolution) so that a higher bitrate chunk can
be replaced by a lower bitrate chunk with a perceptually similar
quality. Unlike our work, this study does not perform an in-depth
exploration of how their approach interacts with existing ABR rate
adaptation algorithms. QBR [8] aims to improve the efficiency of
existing ABR schemes by reducing the data usage while potentially
increasing QoE. Specifically, a QBR server provides additional meta-
data hints to a client, allowing the client to request a reduced bitrate
for chunks of low complexity. QBR is not designed to achieve a
target quality based on a user-specified option. In addition, it does
not provide a grounds-up design as QUAD.

10 CONCLUDING REMARKS

Existing data saving practices for ABR videos often incur undesired
and highly variable video quality, without making themost effective
use of the available network bandwidth. We identify underlying
causes for this behavior and design two novel approaches, CBF and
QUAD, to achieve better tradeoffs among video quality, rebuffering,
quality variations, and cellular data usage. Evaluations demonstrate
that compared to the state of the art, these two schemes achieve
quality closer to desired levels, lower stalls, and more efficient
data usage. Specifically, using CBF with existing schemes leads to
significant benefits in all performance metrics, and QUAD achieves
even better QoE compared to existing schemes enhanced with CBF.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers who gave valuable feedback to
improve this work, and our shepherd, Roger Zimmermann, for guid-
ing us through the revisions. The work of Feng Qian was partially
supported by NSF under award CNS-1750890.

REFERENCES
[1] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,

Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:
Auto-tuning Video ABR Algorithms to Network Conditions. In SIGCOMM.

[2] Apple. 2017. Apple’s HTTP Live Streaming. https://goo.gl/eyDmBc. (2017).
[3] Karl Johan Åström and Richard M. Murray. 2008. Feedback Systems: An Introduc-

tion for Scientists and Engineers. Princeton University Press.
[4] AT&T. 2018. Stream Saver. (2018). https://www.att.com/offers/streamsaver.html
[5] Ali Begen. 2016. Spending "Quality"’ Time with the Web Video. IEEE Internet

Computing (2016).
[6] Chao Chen, Yao-Chung Lin, Anil Kokaram, and Steve Benting. 2017. Encoding

Bitrate Optimization Using Playback Statistics for HTTP-based Adaptive Video
Streaming. arXiv preprint arXiv:1709.08763 (2017).

[7] Jiasi Chen, Amitabha Ghosh, Josphat Magutt, and Mung Chiang. 2012. QAVA:
Quota Aware Video Adaptation. In Proc. of ACM CoNEXT. 121–132.

[8] William Cooper, Sue Farrell, and Kumar Subramanian. 2017. QBR Metadata to
Improve Streaming Efficiency and Quality. In SMPTE.

[9] Jan De Cock and Anne Aaron. 2016. Constant-slope rate allocation for distributed
real-world encoding. In Picture Coding Symposium (PCS), 2016. IEEE, 1–5.

[10] Jan De Cock, Zhi Li, Megha Manohara, and Anne Aaron. 2016. Complexity-based
consistent-quality encoding in the cloud. In ICIP. IEEE.

[11] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. 2016. A
large-scale video codec comparison of x264, x265 and libvpx for practical VOD
applications. In SPIE, Applications of Digital Image Processing.

[12] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. 2011. Understanding the impact of video quality on
user engagement. In ACM SIGCOMM.

[13] Ericsson. 2017. Ericsson Mobility Report. https://goo.gl/mjkwSH. (2017).
[14] FFmpeg. 2017. FFmpeg Project. https://www.ffmpeg.org/. (2017).
[15] International Organization for Standardization. 2012. ISO/IEC DIS 23009-1.2

Dynamic adaptive streaming over HTTP (DASH). (2012).
[16] International Organization for Standardization. 2015. ISO/IEC 23001-10:2015

Carriage of timedmetadata metrics of media in ISO base media file format. (2015).
[17] DASH Industry Forum. 2017. Reference Client 2.4.1. https://goo.gl/XJcciV. (2017).
[18] Google. 2016. ExoPlayer. https://github.com/google/ExoPlayer. (2016).
[19] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark

Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proc. of ACM SIGCOMM.

[20] MulticoreWare Inc. 2018. H.265 Video Codec. http://x265.org/hevc-h265/. (2018).
[21] ITU. 2017. H.264 codec. https://goo.gl/AjvnTs. (2017).
[22] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency,

and stability in HTTP-based adaptive video streaming with FESTIVE. In CoNEXT.
[23] Ioannis Katsavounidis. 2018. Dynamic optimizer a perceptual video encoding

optimization framework. https://goo.gl/zHdium. (2018).
[24] S Shunmuga Krishnan and Ramesh K Sitaraman. 2013. Video stream quality

impacts viewer behavior: inferring causality using quasi-experimental designs.
IEEE/ACM Transactions on Networking 21, 6 (2013), 2001–2014.

[25] TV Lakshman, Antonio Ortega, and Amy R Reibman. 1998. VBR video: Tradeoffs
and potentials. Proc. IEEE (1998).

[26] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha
Manohara. 2016. Toward A Practical Perceptual Video Quality Metric. (2016).
https://goo.gl/ptjrWv.

[27] Zhi Li, Ali Begen, Joshua Gahm, Yufeng Shan, Bruce Osler, and David Oran. 2014.
Streaming video over HTTP with consistent quality. In ACM MMSys.

[28] Yao-Chung Lin, Hugh Denman, and Anil Kokaram. 2015. Multipass encoding for
reducing pulsing artifacts in cloud based video transcoding. In ICIP. IEEE.

[29] Yao Liu, Sujit Dey, Fatih Ulupinar, Michael Luby, and Yinan Mao. 2015. Deriv-
ing and Validating User Experience Model for DASH Video Streaming. IEEE
Transactions on Broadcasting 61, 4 (December 2015).

[30] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proc. of ACM SIGCOMM.

[31] Ricky KP Mok, Xiapu Luo, Edmond WW Chan, and Rocky KC Chang. 2012.
QDASH: a QoE-aware DASH system. In ACM MMSys.

[32] Netflix. 2015. Per-Title Encode Optimization. https://goo.gl/1J5vBv. (2015).
[33] Netflix. 2016. VMAF score aggregation. https://goo.gl/v38JMB. (2016).
[34] Cisco Networks. 2016. Cisco VNI: Global Mobile Data Traffic Forecast Update,

2016-2021. https://goo.gl/64zqTT. (2016).
[35] Pengpeng Ni, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and Pål

Halvorsen. 2011. Flicker effects in adaptive video streaming to handheld de-
vices. In Proc. of ACM Multimedia.

[36] Jan Ozer. 2017. Finding the Just Noticeable Difference with Netflix VMAF. https:
//goo.gl/TGWCGV. (September 2017).

[37] The WebM Project. 2017. VP9 Video Codec. https://goo.gl/Xep8rr. (2017).
[38] Yanyuan Qin, Shuai Hao, K. R. Pattipati, Feng Qian, Subhabrata Sen, Bing Wang,

and Chaoqun Yue. 2018. ABR Streaming of VBR-encoded Videos: Characteriza-
tion, Challenges, and Solutions. In ACM CoNEXT.

[39] Yanyuan Qin, Ruofan Jin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata
Sen, Bing Wang, and Chaoqun Yue. 2017. A Control Theoretic Approach to ABR
Video Streaming: A Fresh Look at PID-based Rate Adaptation. In INFOCOM.

[40] Benjamin Rainer, Stefan Petscharnig, Christian Timmerer, and Hermann Hell-
wagner. 2017. Statistically indifferent quality variation: An approach for reducing
multimedia distribution cost for adaptive video streaming services. IEEE Trans-
actions on Multimedia 19, 4 (2017), 849–860.

[41] Reza Rassool. 2017. VMAF reproducibility: Validating a perceptual practical video
quality metric. In IEEE BMSB.

[42] Selenium. 2017. Selenium Browser Automation. https://goo.gl/2RaANN. (2017).
[43] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From Theory to

Practice: Improving Bitrate Adaptation in the DASH Reference Player. InMMSys.
[44] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-

Optimal Bitrate Adaptation for Online Videos. In INFOCOM. IEEE.
[45] T-Mobile. 2018. T-Mobile Binge On. (2018). https://goo.gl/Q9fbw6
[46] Laura Toni, Ramon Aparicio, Telecom Bretagne, Karine Pires, Gwendal Simon,

Alberto Blanc, and Pascal Frossard. 2015. Optimal selection of adaptive streaming
representations. ACM Trans. Multimedia Comput. Commun. Appl. (2015).

[47] Wikipedia. 2018. Standard-definition television. https://goo.gl/Y5uULb. (2018).
[48] Xiph. 2016. Xiph Video Test Media. https://media.xiph.org/video/derf/. (2016).
[49] Shichang Xu, Z. Morley Mao, Subhabrata Sen, and Yunhan Jia. 2017. Dissecting

VOD Services for Cellular: Performance, Root Causes and Best Practices. In IMC.
[50] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-

Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In
SIGCOMM. ACM.

[51] youtube-dl developers. 2018. youtube-dl. https://goo.gl/mgghW8. (2018).

