
Poster: Improve Push Notification on Smartwatches

Xing Liu Yunsheng Yao Feng Qian
Indiana University Bloomington

1. INTRODUCTION
Receiving push notifications is one of the key features of

smartwatches. In our recent measurement study involving
27 smartwatch users [1], we found that push notifications
are used by more than 200 applications, dominated by
instant messaging, emails, social media, etc. In this
work, we propose a suite of methods to optimize the
performance, energy efficiency, and usability of smartwatch
push notifications, which have several salient features
distinguishing them from regular notifications received on
a smartphone: requiring heavy phone-watch cooperation,
being delivered over short-range Bluetooth link, and
incurring non-trivial energy consumption on watches with
very limited battery capacity. Considering these factors, our
proposed work focuses on four aspects as elaborated below.

• To Push or not to Push. We found that when a
notification is available on the phone side, apps/OS employ
naïve policies to determine whether to push or not to the
watch. For example, many Android apps push a notification
when and only when the phone-side app is not running in the
foreground. Such a policy may cause unnecessary pushes
when the user is interacting with the phone (so she can
already see the message in the notification bar on the phone),
or cause useful pushes to be skipped when the user puts
the phone aside (with the app running in the foreground)
and walks away. Ideally, in most use cases, an app should
perform pushes only when the user is not interacting with the
phone. We thus plan to design and implement an API that
intelligently determines whether to push or not to push by
leveraging diverse types of information sources such as the
user interaction level, the application type, and the physical
distance between the watch and the phone. The API needs
to be reliable and lightweight.

• When to Push. Today’s smartphones perform pushes
immediately when notifications are available. Doing so
minimizes the latency while oftentimes incurring energy
overhead on watches, which need to fully wake up and
keep the display on for several seconds when a notification
arrives. Despite such short wake-up sessions that account
for only 2% of the overall usage period based on our crowd-
sourced measurement, their energy footprint is as high as
27% of the overall watch energy consumption. To reduce
the energy consumption incurred by push, we leverage the
fact that different types of notifications have different delay
tolerance levels. For many delay-tolerant notifications, they
can be pushed to the watch in a single bundle, or be

pushed when the watch wakes up. Batching or piggybacking
message delivery is not a new concept. However we face
several unique challenges here such as determining the delay
tolerance level for notifications, devising an energy-efficient
push strategy, and designing an interface allowing users to
conveniently read multiple notifications on the watch.

• How to Push. On most smartwatches, notifications are
pushed over the Bluetooth (BT/BLE) channel established
between the phone and the wearable. However, the range
of a BT link is short, and some vendors intentionally reduce
the BT antenna power for energy saving purpose. As a
result, handovers between BT and WiFi (many smartwatches
have built-in WiFi) may frequently happen. We found that
on commodity Android watches, a handover may take a
long time to finish, leading to long delays for time-sensitive
notifications such as chat. The problem we try to address
is thus to ensure good push performance during frequent
handovers. We observed from our user study that the arrival
of notifications exhibits a strong bursty pattern. Within a
burst of notifications, the watch can predict the loss of the BT
connectivity and preemptively establish the WiFi channel.
Notifications with high priority will then be pushed over
both channels to ensure their prompt and reliable delivery.

• What to Push. When a notification arrives at the watch,
watch-side apps may allow users to take further actions such
as launching a phone-side activity, opening a URL, or taking
voice input. We found that these actions only involve a small
set of homogeneous operations across a wide range of apps.
Here our idea is to allow the phone not only to push regular
contents such as text and image, but also to push an “applet”
defining the operations that the user can take. The applet is
expected to be small, simple, and cacheable. It can be easily
crafted using OS-provided APIs. This approach can help
reduce watch apps’ development overhead or even eliminate
most watch-side apps whose sole job is to handle simple
interactions upon receiving notifications. The challenges
include making the applets lightweight, secure, and cover
common interaction options that a user may take.

On-going Work and Future Plan. We are working on
designing and implementing the above four optimizations.
We plan to integrate them into a holistic software framework.
Evaluations will be conducted using both in-lab controlled
experiments and our on-going smartwatch user study [1].

2. REFERENCES
[1] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang, and

K. Chen. Characterizing Smartwatch Usage in The Wild. In
MobiSys, 2017.

1


	Introduction
	References

