
Rethink Phone-Wearable Collaboration
From the Networking Perspective

Xing Liu∗

Indiana University
Bloomington, IN

xl45@indiana.edu

Yunsheng Yao∗

Indiana University
Bloomington, IN

yy29@indiana.edu

Feng Qian
Indiana University
Bloomington, IN

fengqian@indiana.edu

ABSTRACT
We routinely carry wearables such as smartwatches and smart
glasses with our smartphones. In this paper, we explore the
feasibility of leveraging wearables’ network interfaces to provide
extra benefits such as enhanced network performance and better
security for smartphones. To provide the protocol support for
these new use cases, we propose a novel multipath scheme
called Distributed Mobile Multipath (DMM), which generalizes
the multipath support to multiple hosts by allowing subflows to
be established from different mobile devices. To demonstrate
the potential benefits of DMM, we conduct preliminary field
experiments, which show that in public locations with free
WiFi, leveraging the smartwatch’s WiFi interface can increase the
smartphone’s download throughput by 70%.

CCS Concepts
•Networks → Network protocol design; •Human-centered
computing→ Ubiquitous and mobile computing;

Keywords
Distributed mobile multipath transport (DMM); Multipath TCP;
Wearable devices; Phone-wearable collaboration

1. INTRODUCTION
Many wearable devices such as smartwatches and smart glasses

need to communicate with the external world. This is usually
achieved by two ways: (1) pairing with a smartphone and using
it as an Internet gateway, or (2) establishing standalone Internet
connections using wearables’ built-in WiFi or cellular interface.
Modern wearables often have standalone network interfaces. For
example, most medium-end smartwatches have WiFi, and some
high-end watches such as LG Watch Urbane 2 are even equipped
with LTE.

These two communication paradigms enable a wide range of
application use cases. In particular, the phone plays an important

∗Co-primary student authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WearSys’17, June 19, 2017, Niagara Falls, NY, USA
c© 2017 ACM. ISBN 978-1-4503-4959-8/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3089351.3089356

User App

Watch-side

User App

(a) (b) (c)

Backup
Path

Figure 1: Boost network performance for the primary device (e.g.,
a smartphone) using a secondary device (e.g., a smartwatch).

role in assisting a wearable in getting the Internet access. However,
on the opposite side, it is oftentimes difficult for a wearable to assist
the phone due to a lack of support from the networking protocol
stack. Let us consider the following scenario: Alice stays in a hotel
that offers free WiFi with its rate being limited to 1Mbps per device.
Meanwhile she wants to watch a video on her smartphone whose
bitrate is 1.6Mbps, which is clearly not achievable without stalls
through the free WiFi using a single mobile device. Nevertheless,
Alice also wears a smartwatch with a WiFi interface. Ideally, if the
watch and phone stream the video jointly, Alice would be able to
watch the video smoothly without purchasing the premium WiFi
plan or using her limited cellular data. Through pilot experiments,
we demonstrate in §4 that the above scenario is prevalent in real-
world locations such as restaurants, shopping centers, and buses,
where per-device rate limiting is often enforced. Given the co-
presence of smartphones and wearables, at these places, a user can
conveniently leverage her wearable to accelerate the data transfer
for her phone.

1.1 Approach Overview
Inspired by the above use case, the high-level idea of our

proposal is intuitive: as we routinely carry both wearables and
phones, their network interfaces can be leveraged in a cooperative
manner to enhance the phone-side network performance, in an
application-transparent manner. This is illustrated in Figure 1(a).
The phone and wearable download different portions of the same
content from the server through their separate WiFi interfaces.
Upon receiving the data, the wearable sends it to the phone
using a local link such as Bluetooth or Direct WiFi. The phone
then merges the portion obtained from the wearable with its own
downloaded portion, and delivers the reassembled data stream to
the application. Note that this paradigm can be configured in
different ways. As shown in Figure 1(b), if both devices have
a cellular interface, the two cellular paths can also be combined

http://dx.doi.org/10.1145/3089351.3089356

to enhance the performance. Figure 1(c) shows a scenario where
the phone “onloads” the Internet connection to the wearable. This
sounds counter-intuitive but we do believe there are valid use
cases. For example, in the hotel room, Alice can leverage the
watch as an LTE/WiFi range extender by placing it at a spot (e.g.,
by the window) with good signal strength. In another example,
when the battery level of the phone is critical, it also makes
sense to onload cellular connectivity, which is power-hungry [4],
to the wearable (with sufficiently high battery level). One issue
here is the potentially high energy consumption of the wearable.
This is indeed a valid concern. However we argue that in many
scenarios, users do have incentives to trade an acceptable amount of
wearable’s energy for better performance, as to be further justified
in §5.

Now consider how to realize the schemes in Figure 1. They
can be realized at the application layer (e.g., using separate HTTP
byte range requests) as done by prior cross-device data sharing
systems [9, 1, 17]. Despite its simplicity, this approach lacks
generality. We instead advocate for a transport-layer OS service
for phone and wearable to cooperatively fetch contents with
application transparency.

As readers may know, if the two interfaces are on the same host,
their cooperation can be achieved by multipath, a popular system
solution allowing applications to simultaneously use more than one
network paths. The de-facto multipath solution is Multipath TCP
(MPTCP [5]), which transparently stripes a user TCP connection’s
data across multiple network paths (subflows) by adding a shim
layer to TCP. MPTCP has registered wide deployment.

In our scenario, since the two subflows reside on different hosts,
directly applying MPTCP is difficult. We thus propose a transport-
layer cross-device connection sharing scheme called Distributed
Mobile Multipath Transport (DMM). As its name suggests, the
basic idea of DMM is to generalize the multipath support to
multiple mobile hosts by allowing the subflows to be established
from different client hosts. In Figure 1(a), the two subflows are
phone–server and watch–server. When the watch receives the data,
it will then forward the data over a custom data channel to the
phone.

In §2, we detail the design of DMM. DMM’s capability goes
beyond just speeding up network transfers. In §3, we show
another use case of DMM for protecting users’ sensitive data on
smartphones. In §4, we present preliminary results showing that
in public locations with free WiFi, leveraging a smartwatch’s WiFi
interface can increase the smartphone’s download throughput by
70% (the median value). We discuss several practical issues in §5,
summarize related work in §6, before concluding the paper in §7.

1.2 Contributions
Overall, this paper makes the following contributions.

• Given the co-presence of wearables and smartphones in
our daily life, we propose novel use cases of leveraging
wearables to improve the network performance, energy
efficiency, and security for the smartphone.

• We propose DMM, a lightweight cross-device connection
sharing scheme that serves as the underlying protocol for
the above use cases. Note that DMM is a general extension
of the multipath transport and its applicability goes beyond
wearable and mobile networking.

• We conduct preliminary field studies to demonstrate the
feasibility of leveraging wearables to boost the network
performance for the smartphone.

2. DMM: DISTRIBUTED MOBILE
MULTIPATH TRANSPORT

DMM is motivated by the increasingly prevalent deployment of
multipath solutions such as MPTCP. As its name suggests, the basic
idea of DMM is to generalize multipath to multiple mobile hosts by
allowing the subflows to be established from different client hosts.
In Figure 1(a), the two subflows are phone–server and watch–
server, which belong to the same TCP connection established by the
application. When the watch receives the data, it will then forward
the data over a custom data channel, which we call a pipe, to the
phone. The pipe is transparent to the server, which only sees the
two subflows as a normal multipath server would perceive.

2.1 Why Not the Tethering Approach?
Before describing our proposal, we first consider an alternative

approach that leverages tethering. After being tethered to the phone
(e.g., via USB or WiFi), a wearable will essentially appear as a
virtual network interface on the phone. The phone can then apply
off-the-shelf MPTCP to both its local interface and the virtual
interface. This approach is used by some existing system such as
Mobile kibbutz [12]. Compared to the tethering approach, DMM
offers several benefits and new features as highlighted below.

• In the tethering approach, the wearable acts as a simple
layer-3 router that blindly forwards the data. DMM instead
works at Layer 4. It allows various types of transport-layer
enhancement and policies to be carried out over the pipe,
leading to better performance and reliability (§2.3).

• Oftentimes more than one link can potentially be used for
tethering (e.g., WiFi, Bluetooth, and Bluetooth Low Energy)
and it is up to the user to make a static configuration. DMM
instead allows the pipe to be dynamically selected based on
the subflow data rate to balance the tradeoff between the
performance and the wearable’s energy consumption.

• In the tethering approach, when the phone-wearable
connectivity is lost (e.g., when the wearable temporarily
moves out of the Bluetooth range), the virtual interface will
go down and all its associated states will be lost. DMM,
instead, can maintain the transport-layer states (e.g., packets
buffered at the wearable) to facilitate the recovery of the
subflow when the phone-wearable connectivity comes back.

• DMM can be extended to enable more sophisticated use
cases that cannot be supported by tethering (§3).

We next present the design of DMM, which extends MPTCP,
the state-of-the-art multipath solution. For the purpose of applying
DMM in the wearable context, we assume that all distributed
mobile devices are trusted. Also, in this paper we limit our
discussions to two subflows (phone-server and wearable-server)
despite our confidence of extending DMM to multiple subflows.

2.2 The Basic Design
TCP ensures reliable process-to-process communication. There-

fore, in DMM, although a TCP connection spans across devices,
at any given time only two user processes are involved in sending
and receiving application data. We call the client device on which
the user process resides the primary device and the other device
the secondary device. Without loss of generality, let the primary
device be the phone and the secondary device be the wearable. We
assume that the data channel between the phone and the wearable
has already been established (e.g., the wearable has paired with the
phone). Recall that such a channel is called a pipe.

MP_CAPABLE (Client Key)

MP_CAPABLE (Server Key)

ACK + MP_CAPABLE (Client Key, Server Key)

DMM_JOIN (IP Addr, Port, Connection ID,
Client Address ID, Client Key, Server Key)

MP_JOIN (...)

MP_JOIN (...)

ACK+MP_JOIN (...)

ACK+MP_JOIN (...)

DMM_JOIN_SUCC
(Connection ID

Client Address ID,
Server Address ID)

Figure 2: DMM connection handshake.

Connection Establishment. Figure 2 describes how a DMM-
capable MPTCP connection is established. While the high-
level procedure is somewhat similar to the MPTCP connection
establishment, the two devices need to exchange some information
over the pipe. Specifically, Step ¶ and ¸ perform handshakes for
the phone’s subflow and the wearable’s subflow, respectively (same
as those in MPTCP if the subflows are on the same host); Step ·
and ¹ are new control messages being exchanged over the pipe. In
Step ·, the phone informs the wearable of necessary information:
the server IP address and port number tell the wearable which
server to connect; the client/server keys exchanged in the phone’s
subflow handshake will be used to craft the MP_JOIN messages
so that the server can authenticate the wearable’s subflow and
associate it with the phone’s; the client Address ID will also
appear in an MP_JOIN message as a reference to the subflow’s
address; the Connection ID is a new identifier introduced by
DMM to refer to the whole connection when data is exchanged
over the pipe, over which multiple connections are multiplexed.
In Step ¹, the phone is notified when the wearable’s subflow
is established. Besides connection establishment, procedures for
subflow management, connection shutdown, and error handling can
also be designed, with details omitted here.

Data Transfer. For download, the phone and the wearable
separately maintain subflow-level receive buffers. In addition,
the phone (the primary device) also needs to maintain the meta
receive buffer where all subflows’ data is reassembled into the
original byte stream. When the wearable receives any data, the
data (with its connection-level sequence number and Connection
ID attached) will be forwarded over the pipe to the phone. For
data upload, the phone maintains the meta send buffer. It runs a
scheduling algorithm (e.g., MinRTT1 or round robin) that stripes
the application data stream onto the two subflows. For the
wearable’s subflow, the data first needs to be forwarded to the
wearable and then be transmitted to the server. Note that during
download (upload), when the wearable receives any data from the
server (phone), it should not ACK the data by itself. Instead, it
should wait for the ACK from the phone (server) and forward
the ACK to the server (phone). Doing so offers two advantages.
First, it allows the sender to accurately estimate the end-to-end RTT
and thus to make correct scheduling decisions (e.g., for MinRTT).
Second, it also provides better fault tolerance by allowing the server
to retransmit the data when the pipe is lost.

Server Transparency. It is important to note that DMM is fully
transparent to the server, whose MPTCP stack still thinks the two

1MinRTT is the default scheduler used by MPTCP. It always picks
the path with the smallest RTT to transmit a packet.

DataData AckAck PipePipe

(a)
Forwarding

(b)
Storing

(c)
Draining

(d) Storing
& draining

Figure 3: Different working modes of DMM.

subflows originate from the same host. In this way, DMM can
immediately work with existing servers and proxies that support
MPTCP.

2.3 Pipe Realization and Management
A key primitive introduced by DMM is the pipe. It provides

a flexible layer-4 channel to bridge the phone and the wearable.
A pipe can be realized by various types of radio links such as
regular WiFi, direct WiFi, classical Bluetooth (BT), and Bluetooth
Low Energy (BLE). If the phone and wearable are in the same
local 802.11 network, they can communicate via regular WiFi.
Otherwise direct WiFi can be used to establish a device-to-device
(D2D) link as the pipe. Many of today’s WiFi chips (e.g.,
Broadcom BCM4325 and Qualcomm WCN1312) allow the device
to simultaneously connect to a regular WiFi (used for a subflow)
and WiFi direct (used for the pipe). The pipe can also be realized
by BT or BLE that are more energy-efficient.

Dynamic Pipe Selection. When multiple wireless links are
available for realizing the pipe, DMM needs to select one
judiciously. On one hand, the bandwidth of the pipe needs to be
higher than that of the wearable-server path to prevent the pipe
from becoming the performance bottleneck. On the other hand,
using a pipe whose bandwidth is too high may waste energy. We
plan to design an algorithm that dynamically selects the pipe’s
link based on the measured wearable-server path bandwidth, the
power consumption profile of the candidate wireless links, and the
application requirement for throughput and latency. A change of
the network condition may result in a change of the pipe’s link.

Storing and Draining Mode. In our basic design (§2.2), the
watch simply forwards the data and ACKs it receives. We call
this the forwarding mode as shown in Figure 3(a). DMM also
introduces two other modes illustrated in Figure 3(b) and 3(c): the
storing mode and the draining mode. In the storing mode, the
wearable receives and ACKs the data from the server by itself. The
data will then be stored (buffered) locally without being sent to the
phone. On the phone side, since the wearable subflow’s data is
missing, the phone also has to buffer the data received from its own
subflow. Since the server maintains the mappings between subflow-
level sequence numbers and connection-level sequence numbers, it
can tell which portion of the file has been received (by either the
wearable or the phone) from each subflow’s ACK stream. In the
draining mode, the wearable sends over the pipe its buffered data
to the phone, which can then perform reassembly and deliver the
data to the application. It is important to note that (1) the storing
and draining mode can happen in parallel when the wearable-server
path has a higher throughput than the pipe, as shown in Figure 3(d);
(2) these two modes should only be used for downloading delay-

Regular
Requests

and all
responses

Sensitive
Requests

Sensitive
Requests

containing
actual data

User s
sensitive

data

HTTP POST
Name=????
SSN=??????

HTTP POST
Name=Alice
SSN=123456

Figure 4: Wearable-assisted SUD protection.

tolerant contents because the storing mode will delay the initial
delivery of the content to the application; (3) if the wearable with
stored data is lost permanently (e.g., running out of battery), the
entire connection needs to be aborted.

There are several use cases of the storing and draining modes.
For example, consider again Figure 1(a). Suppose that due to
hardware and network restriction, on the wearable side, when WiFi
is used by the WAN (i.e., the Internet), the only available link for
the pipe is BT whose bandwidth is lower than WiFi. In this case,
the data rate of the wearable’s subflow will be limited by the BT
link. If the data transfer is delay-tolerant, the wearable can first
switch to the storing mode and meanwhile perform the (optional)
draining over BT. When the wearable has received all data, it will
change the pipe from BT to WiFi over which the remaining stored
data will be drained to the phone at a high speed. Such a “store-
then-drain” scheme reduces the overall download time at the cost
of delaying the initial file delivery.

Handling Fluctuating Pipe Connectivity. Another use case
of the storing mode is to deal with temporarily poor or lost
pipe connectivity. This may happen when the wearable is in
mobility. In this case (assuming a download is in progress), the
wearable can enter the storing and draining mode to prevent the
pipe from slowing down the WAN-side download. When the pipe
connectivity becomes stable, the wearable will then switch back
to the normal forwarding mode. The wearable can perform early
detection of the poor pipe connectivity using, for example, the
decrease of the pipe’s available bandwidth or signal strength as
indicators.

3. DMM USE CASE: PROTECT
SENSITIVE DATA USING WEARABLE

Besides improving the performance, DMM can be flexibly used
for other purposes. Here we exemplify a use case of using
wearables to enhance smartphone security.

It is common that users store various types of sensitive user data
(SUD) such as credit card numbers and social security numbers on
their smartphones. Unfortunately, smartphones are vulnerable to
a wide range of attacks that may cause such sensitive data to be
leaked. For example, the phone can be physically stolen or get
unauthorized access; stealthy spyware and malware may discover
and leak confidential information in various ways.

We propose to leverage the wearable to protect the SUD. The
basic idea is illustrated in Figure 4. The SUD is stored on
a wearable, which is assumed to be much more secure than a
smartphone. We believe this is a valid assumption in most real-
world scenarios: due to their wearable nature, wearables are less
likely to be stolen or get unauthorized physical access; also their

system software and applications are usually simpler, leading to a
smaller number of attack vectors. As shown in Figure 4, regular
requests and all responses are still sent/received by the phone.
When the phone needs to send out any SUD, it composes a request
(e.g., an HTTPS POST request) as usual but with blank SUD fields
and sends the request to the wearable. The wearable will then fill
in the actual SUD and send the real request to the server. Note
that the SUD is neither stored on nor transmitted by the phone2.
Therefore even if the phone is stolen or compromised, the attacker
cannot recover the SUD. Also the whole procedure is transparent to
the server, which is not aware of the SUD being stored separately.

Within the above wearable-assisted SUD protection system,
DMM plays an important role in ensuring that only the requests
containing SUD, which usually account for a tiny portion within
a persistent HTTPS session, are transmitted by the wearable.
Otherwise (e.g., if forwarding every request to the wearable), the
incurred energy overhead on the wearable would be too high.
Normally the phone as the primary device will only use its own
subflow. For a request involving SUD, the phone will send the
request with blank SUD to the wearable through the (encrypted)
pipe. A special flag needs to be set so the wearable can perform
further processing on the request before forwarding it to the server.
The phone also needs to instruct DMM to swap the roles of the two
devices: now the wearable becomes the primary device and the
phone becomes the secondary device (recall in §2.2 that only the
process on the primary device is involved in sending and receiving
application data). This allows the SUD protection process on
the wearable to perform the next step: fill the actual SUD into
the request and transmit it over the wearable’s subflow. After
transmission, the wearable instructs DMM to swap the roles back:
the phone now becomes the primary device and the wearable the
secondary. Also, since the application TCP connection is encrypted
by TLS (SSL), the TLS session key and the cipher algorithm need
to be securely shared [19] between the phone and the wearable
so that the wearable can encrypt the SUD request using the same
session key before transmitting it. Note the initial TLS handshake
that derives the session key can be solely performed on the phone.

Designing and implementing the entire system outlined above
is a project of its own. Besides the key design decision of using
DMM as the transport-layer infrastructure, we highlight several
other design principles below. First, since HTTP(S) dominates
the mobile application protocol usage, focusing on HTTPS request
rewriting can satisfy most applications’ requirements. Doing so
makes the system lightweight compared to some existing approach
that employs heavyweight solutions such as code offloading [19].
Second, we need to design a SUD management scheme allowing
securely adding, removing, and modifying SUD. Third, to further
enhance the security, we can strategically split a piece of SUD
into two pieces that are stored on the phone and the wearable
respectively. In this way, unless an attacker has access to both
devices, the SUD will not be leaked. Each SUD can also be bound
to a domain whitelist to prevent the SUD from being leaked to
untrusted domains.

4. PRELIMINARY FIELD EXPERIMENTS
To assess the potential benefits of DMM for boosting network

performance, we conduct preliminary field experiments at ten
public places including hotels, airports, restaurants, shopping
2When the watch does not have the Internet access (but the phone
does), the wearable can tunnel the request to the proxy (see §5)
through the phone. The tunnel is established between the watch
and the proxy. It is encrypted separately and independently so the
phone is not able to access the tunneled data.

Throughput (Mbps)
100 101

C
D

F

0

0.2

0.4

0.6

0.8

1

Phone
Watch
Total

Figure 5: Distributions of phone-side, watch-side, and aggregated
throughput.

Acceleration Ratio
0 0.5 1 1.5 2

C
D

F

0

0.2

0.4

0.6

0.8

1

Figure 6: Distribution of acceleration ratio (watch-side throughput
/ phone-side throughput).

centers, and shuttle buses with free WiFi access. Our devices
consist of a Nexus 5X smartphone (as the primary device) and an
LG Urbane watch (as the secondary device). Both devices have a
standalone WiFi interface. At each location, the phone and watch
download a large file in parallel using the free WiFi, and their
throughput is measured separately. As one device may finish the
download earlier than the other, we only consider the period when
the two devices are simultaneously receiving data. We use the
sum of the throughput measured at each device to estimate how
much speed-up DMM can bring by involving the wearable. Note
that a limitation of our experiment is that we did not consider the
pipe, which may throttle the wearable’s subflow. We repeat the
experiment at least three times at each location, yielding a total
number of 36 measurements.

Figure 5 plots the distributions of the phone’s average
throughput, the watch’s average throughput, and their sum across
all experiments. We highlight several observations here. First, at
most of these public locations, the free WiFi data rate is not high:
the 25-th, 50-th, and 75-th percentiles of the phone’s throughput
are 1.05Mbps, 1.98Mbps, and 5.70Mbps, respectively. Second,
the watch-side throughput is even lower, with the 25-th, 50-th,
and 75-th percentiles being 0.80Mbps, 1.17Mbps, and 2.31Mbps,
respectively. This is likely explained by the watch’s smaller radio
antenna or its reduced Rx power compared to the smartphone’s
WiFi. Also, given that Bluetooth’s peak data rate is around 2Mbps,
in about 30% of the cases using BT as the pipe may throttle the
wearable’s subflow. This can be mitigated by the storing mode
introduced in §2.3. Third, collaboratively using the two devices’
WiFi interfaces leads to significant improvement of the download

throughput. Figure 6 plots the distribution of the acceleration ratio,
which is computed as the ratio between the wearable’s throughput
and the phone’s throughput when they simultaneously receive data.
The 25-th, 50-th, and 75-th percentiles of the acceleration ratio are
50%, 70%, and 80%, respectively. Overall, the results indicate that
leveraging wearables to assist phone’s network transfers is feasible
and can bring significant speedup.

5. DISCUSSIONS
Implementation and Deployment. DMM can be implemented

as an MPTCP extension realized in the kernel. A recent study [14]
demonstrates the feasibility of realizing most of the MPTCP logic
in the user space. We can also take this more flexible approach
for DMM. Most of DMM’s logic is transparent to the mobile
apps. Some advanced features such as primary/secondary device
swapping (§3) need to be controlled by applications through simple
APIs. DMM should also be transparent to servers. This is indeed
true if the server is MPTCP-capable. However, since not all of
today’s servers support MPTCP, a practical approach is to introduce
an MPTCP proxy that performs translation between MPTCP (with
clients) and single-path TCP (with servers). The proxy works
entirely at the transport layer so it does not break TLS/SSL.

Wearable Energy Consumption. DMM naturally incurs
energy overhead on wearables. We argue that in many scenarios,
users do have incentives to trade a reasonable amount of wearable’s
energy for better performance. To gain more insights, we conduct
a feasibility study for the cellular onload use case shown in
Figure 1(c). We consider a typical watch’s battery capacity: 570
mAh as offered by LG Watch Urbane 2. All power numbers below
are obtained from a recently derived smartwatch power model for
LG Urbane [11]. The dozing power of the watch is 24.3mW, which
implies that at the standby mode (with the watch face display on),
the watch can last for 86.8 hours. We next assume that during x
percent of the overall usage period, the watch is performing cellular
onload using its LTE (for the WAN connectivity) and Classic
Bluetooth (for the pipe). Due to the highly bursty smartphone
traffic pattern [8], we consider x ∈ {5%, 10%, 15%}. During
onload, the watch spends additional energy on LTE (1165 mW3),
Bluetooth (111 mW), and CPU (32mW, conservatively assuming
15% CPU utilization). If onload is enabled, the watch standby
time is reduced to 23.5, 13.6, and 9.6 hours for x = 5%, 10%, and
15%, respectively, which we think are still acceptable for a typical
smartwatch user in particular when her phone’s battery is dying.
When x = 100%, a fully charged watch can provide continuous
onload for 1.6 hours, equivalent to increasing the phone’s battery
capacity by 456 mAh (about 1/4 of an iPhone 7’s battery capacity).
Using WiFi will make the wearable last even longer. Overall, we
believe that the above estimation, despite being very preliminary,
provides incentives of using DMM in many real-world scenarios.

6. RELATED WORK
Cross-device Data Sharing. There exist several systems

allowing cross-device data sharing. MicroCast [9] leverages
multiple smartphones within proximity of each other to stream
video cooperatively. COMBINE [1] allows nearby users to
collaboratively download files over WWAN. Cool-Tether [17]
provides energy-efficient cellular tethering. Unlike DMM, all
above systems realize data sharing at the application layer. Mobile
kibbutz [12] leverages tethering and MPTCP to allow a group
3The power model in [11] does not include LTE, so we use the
LTE power model for Galaxy S4 LTE described in [4], assuming
the signal strength of -95dBM and an amortized tail power of 5%.

of users to share cellular connectivity. DMM by contrast offers
several additional advantages as described in §2.1. There also exist
inverse multiplexing systems such as PRISM [10] and Horde [16]
that construct a virtual high-bandwidth channel from several low-
bandwidth channels. While their high-level concept is similar to
DMM and to MPTCP, DMM focuses on optimizing the nodes’
local communication over the pipe. Also these inverse multiplexing
systems are usually heavy-weight, and require significant changes
to the protocol stack such as TCP. Finally, none of the above
systems has been applied to wearables, which DMM is designed
for.

Mobile Multipath. Researchers have measured MPTCP
performance on smartphones [2, 3], the interplay between
multipath and applications such as video streaming [7] and web
browsing [6], and the energy aspect [13]. In these studies, all
subflows are established from the same mobile device. DMM
instead considers distributing the subflows over multiple devices
to facilitate their collaboration.

Cloud-assisted Sensitive Data Protection. There exist systems
such as TinMan [19], CleanOS [18], and Paranoid Android [15]
that leverage the cloud to protect mobile users’ privacy. The
high-level concept of TinMan [19] is similar to our wearable-
assisted SUD protection scheme. There are however several key
differences. First, TinMan stores the sensitive data in the cloud
while ours only stores it on a user’s personal wearable device to
minimize SUD’s exposure to the external world and to allow the
user to manage her SUD completely locally. Second, TinMan
uses code offloading to switch the control from the local device
to the cloud, while ours employs HTTPS request rewriting, which
is much more lightweight and ensures the minimal involvement of
the wearable. Third, TinMan uses IP address spoofing to let the
mobile client and the cloud “share” the same connection. This ad-
hoc approach will fail, for example, when the spoofed IP packet
is lost or dropped by a local router. We instead leverage DMM, a
more systematical approach, to enable convenient sharing of a TCP
connection.

7. CONCLUSION & ON-GOING WORK
We routinely carry both wearables and phones. In this

paper, we explore the feasibility of leveraging wearables’ network
interfaces to enhance the phone-side network performance and
other aspects such as security. Based on our field tests, under
a wearable’s assistance, DMM can improve smartphone WiFi
download throughput by 70% (the median value) in public places.
We are currently implementing a DMM prototype. Leveraging
DMM, we plan to further build new applications such as the
wearable-assisted SUD protection system.

Acknowledgements
We thank the WearSys reviewers for their feedback. This work
was supported in part by NSF Award #1629347 and NSF Award
#1618898.

8. REFERENCES
[1] ANANTHANARAYANAN, G., PADMANABHAN, V. N.,

RAVINDRANATH, L., AND THEKKATH, C. A. Combine:
leveraging the power of wireless peers through collaborative
downloading. In MobiSys (2007).

[2] CHEN, Y.-C., LIM, Y.-S., GIBBENS, R. J., NAHUM,
E. M., KHALILI, R., AND TOWSLEY, D. A

Measurement-based Study of MultiPath TCP Performance
over Wireless Networks. In IMC (2013).

[3] DENG, S., NETRAVALI, R., SIVARAMAN, A., AND
BALAKRISHNAN, H. WiFi, LTE, or Both? Measuring
Multi-homed Wireless Internet Performance. In IMC (2014).

[4] DING, N., WAGNER, D., CHEN, X., PATHAK, A., HU,
Y. C., AND RICE, A. Characterizing and modeling the
impact of wireless signal strength on smartphone battery
drain. In SIGMETRICS (2013).

[5] FORD, A., RAICIU, C., HANDLEY, M., AND
BONAVENTURE, O. TCP Extensions for Multipath
Operation with Multiple Addresses. RFC 6824, 2013.

[6] HAN, B., QIAN, F., HAO, S., AND JI, L. An Anatomy of
Mobile Web Performance over Multipath TCP. In CoNEXT
(2015).

[7] HAN, B., QIAN, F., JI, L., AND GOPALAKRISHNAN, V.
Mp-dash: Adaptive video streaming over preference-aware
multipath. In CoNEXT (2016).

[8] HUANG, J., QIAN, F., GUO, Y., ZHOU, Y., XU, Q., MAO,
Z. M., SEN, S., AND SPATSCHECK, O. An In-depth Study
of LTE: Effect of Network Protocol and Application
Behavior on Performance. In SIGCOMM (2013).

[9] KELLER, L., LE, A., CICI, B., SEFEROGLU, H.,
FRAGOULI, C., AND MARKOPOULOU, A. Microcast:
Cooperative video streaming on smartphones. In MobiSys
(2012).

[10] KIM, K.-H., AND SHIN, K. G. Improving tcp performance
over wireless networks with collaborative multi-homed
mobile hosts. In MobiSys (2005).

[11] LIU, X., CHEN, T., QIAN, F., GUO, Z., LIN, F. X., WANG,
X., AND CHEN, K. Characterizing Smartwatch Usage in the
Wild. In MobiSys (2017).

[12] NICUTAR, C., NICULESCU, D., AND RAICIU, C. Using
cooperation for low power low latency cellular connectivity.
In CoNEXT (2014).

[13] NIKA, A., ZHU, Y., DING, N., JINDAL, A., HU, Y. C.,
ZHOU, X., ZHAO, B. Y., AND ZHENG, H. Energy and
Performance of Smartphone Radio Bundling in Outdoor
Environments. In WWW (2015).

[14] NIKRAVESH, A., GUO, Y., QIAN, F., MAO, Z. M., AND
SEN, S. An in-depth understanding of multipath tcp on
mobile devices: measurement and system design. In
MobiCom (2016).

[15] PORTOKALIDIS, G., HOMBURG, P., ANAGNOSTAKIS, K.,
AND BOS, H. Paranoid android: versatile protection for
smartphones. In ACSAC (2010).

[16] QURESHI, A., AND GUTTAG, J. Horde: separating network
striping policy from mechanism. In MobiSys (2005).

[17] SHARMA, A., NAVDA, V., RAMJEE, R., PADMANABHAN,
V. N., AND BELDING, E. M. Cool-tether: energy efficient
on-the-fly wifi hot-spots using mobile phones. In CoNEXT
(2009).

[18] TANG, Y., AMES, P., BHAMIDIPATI, S., BIJLANI, A.,
GEAMBASU, R., AND SARDA, N. Cleanos: Limiting mobile
data exposure with idle eviction. In OSDI (2012).

[19] XIA, Y., LIU, Y., TAN, C., MA, M., GUAN, H., ZANG, B.,
AND CHEN, H. Tinman: Eliminating confidential mobile
data exposure with security oriented offloading. In EuroSys
(2015).

	Introduction
	Approach Overview
	Contributions

	DMM: Distributed MobileMultipath Transport
	Why Not the Tethering Approach?
	The Basic Design
	Pipe Realization and Management

	DMM Use Case: ProtectSensitive Data using Wearable
	Preliminary Field Experiments
	Discussions
	Related Work
	Conclusion & On-going Work
	References

