
MPBond: Efficient Network-level Collaboration Among Personal
Mobile Devices

Xiao Zhu
University of Michigan
shawnzhu@umich.edu

Jiachen Sun
University of Michigan
jiachens@umich.edu

Xumiao Zhang
University of Michigan
xumiao@umich.edu

Y. Ethan Guo
Uber Technologies, Inc.
yhguo@umich.edu

Feng Qian
University of Minnesota
fengqian@umn.edu

Z. Morley Mao
University of Michigan

zmao@umich.edu

ABSTRACT
MPBond is an efficient system allowingmultiple personal mobile de-
vices to collaboratively fetch content from the Internet. For example,
a smartwatch can assist its paired smartphone with downloading
data. Inspired by the success of MPTCP, MPBond applies the con-
cept of distributed multipath transport where multiple subflows
can traverse different devices. We develop a cross-device connec-
tion management scheme, a buffering strategy, a packet scheduling
algorithm, and a policy framework tailored to MPBond’s architec-
ture. We implement MPBond on commodity mobile devices such
as Android smartphones and smartwatches. Our real-world evalua-
tions using different workloads under various network conditions
demonstrate the efficiency of MPBond. Compared to state-of-the-
art collaboration frameworks, MPBond reduces file download time
by 5% to 46%, and improves the video streaming bitrate by 2% to
118%. Meanwhile, it improves the energy efficiency by 10% to 57%.

CCS CONCEPTS
• Networks → Network protocol design; Transport proto-
cols; • Human-centered computing → Ubiquitous and mo-
bile computing systems and tools.
ACM Reference Format:
Xiao Zhu, Jiachen Sun, Xumiao Zhang, Y. Ethan Guo, Feng Qian, and Z.
Morley Mao. 2020. MPBond: Efficient Network-level Collaboration Among
Personal Mobile Devices. In The 18th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’20), June 15–19, 2020,
Toronto, ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3386901.3388943

1 INTRODUCTION
It is increasingly common that a user possesses multiple mobile
devices. For example, despite being a full-fledged computer, a smart-
watch naturally needs to pair with a smartphone; business people of-
tentimes carry two phones, one for work and the other for personal
tasks [1, 5]; tablets bear large screens and reasonable portability,
making them good companions of smartphones.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7954-0/20/06. . . $15.00
https://doi.org/10.1145/3386901.3388943

From the networking perspective, smart mobile devices are
equipped with diverse network interfaces such as cellular, WiFi, and
Bluetooth (BT), making them capable of communicating with re-
mote Internet servers as well as other local devices. We make a key
observation that despite such a mature wireless hardware support,
the potential of the devices’ network interfaces that can operate
collaboratively is far from being fully exploited. In this paper, we
bridge this critical gap by bringing networking software innovations
to the smart mobile device ecosystem. Specifically, we develop MP-
Bond, a holistic system allowing multiple personal mobile devices
to collaboratively fetch content from the Internet. MPBond enables
a wide range of use cases that today’s mobile/wearable OSes do not
support or provide optimal performance for:
• A smartwatch can assist its paired smartphone with downloading
data over cellular (many COTS smartwatches today have direct
cellular access). This leads to a much higher throughput compared
to using a single device.
•WiFi networks offered by public places such as hotels often impose
per-interface rate limit. Such a limit can be naturally overcome by
multi-device collaboration since each participating device has its
own WiFi interface.
• Two smartphones can share each other’s LTE bandwidth. In other
words, their cellular interfaces are “combined” by MPBond and can
be used by apps as a single virtual interface.
• Wearables can be placed at a spot with good signal and act as
WiFi/LTE “range extenders”. When running low on battery, a smart-
phone can offload power-hungry LTE access to a smartwatch paired
over an energy-efficient BT link.

By closely examining the above use cases, we notice that all of
them can be realized under the multipath transport scheme, where
user data can be distributed over multiple subflows (paths).

Unlike traditional multipath paradigms such as MPTCP [45],
MPBond needs to support distributed multipath where subflows
traverse different devices. Specifically, MPBond involves one pri-
mary device, where the client app runs, and multiple helper devices,
which boost the primary’s network performance. Without loss of
generality, for the first use case above, the traffic from the primary
is intercepted by the MPBond service, which distributes part of the
traffic to the helpers over local wireless links (called pipes), and
transmits the remaining over the primary’s cellular interface. The
helpers then forward the traffic to the remote server through their
own cellular interfaces. The reverse (downlink) direction works in
a similar way: the server or an MPBond-capable proxy distributes

https://doi.org/10.1145/3386901.3388943
https://doi.org/10.1145/3386901.3388943
https://doi.org/10.1145/3386901.3388943

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Xiao Zhu et al.

the content to the primary and helpers. The primary merges all the
received parts and delivers the content to the client app.

The above scheme provided by MPBond appears to be intuitive.
However, we face numerous challenges when designing and im-
plementing the system. How to properly manage heterogeneous
devices and local wireless links? How to strategically leverage the
helper devices to improve the network performance? How to de-
sign a robust multipath scheduler that considers both remote paths
and local pipes, with the latter being unique in MPBond? How to
expose appropriate interfaces to users and applications? How to
make the whole MPBond system transparent to client and server
applications? We next highlight our key design aspects.
• As a distributed multipath transport framework, MPBond allows
a subflow to traverse a helper, and enables helpers to exchange
data with the primary device over pipes. We develop a scheme to
flexibly manage the pipes using different wireless technologies such
as WiFi and BT. To support distributed multipath and pipes, we
extend MPTCP’s control plane protocol to coordinate the primary
and helpers (§4.1).
•MPBond splits any subflow into two TCP (sub)flows, one between
the primary and the helper, and the other between the helper and
the server. TCP splitting benefits end-to-end TCP sessions that span
heterogeneous networks as the case of MPBond (the Internet and
the pipes). More importantly, doing so allows buffers to be set up
between the split flows, which effectively mitigate the negative
performance impact incurred by the fluctuating network condition
on either network. Although TCP splitting is not new [25, 51], we
take this concept a step further by applying it to helper devices in
the context of mobile multipath transport (§4.2).
•We develop a Pipe-Aware Multipath Scheduler (PAMS) that strate-
gically distributes traffic onto multiple subflows. Tailored to MP-
Bond, PAMS consists of three key components: (1) a subflow latency
estimation module that considers pipes, helper-side buffering, and
heterogeneous networks; (2) an algorithm that makes judicious
scheduling decisions to ensure low delivery latency for each packet;
and (3) a smart reinjection scheme that deals with fluctuating net-
work conditions and possible failures over pipes (§4.3).
•MPBond allows users to flexibly specify various policies such as
granting per-app usage permission, limiting per-device resource
consumption, and prioritizing traffic (§4.4).

We implement MPBond on commodity mobile devices includ-
ing Android smartphones and smartwatches. We showcase that
most of MPBond logic can be implemented in the user space while
maintaining full application transparency and good performance
(§5). We then systematically evaluate MPBond over real mobile
networks. Our key evaluation results consist of the following (§6).
• Compared to kibbutz [35] and COMBINE [13], two state-of-the-
art systems, MPBond reduces the energy consumption by 10%-57%
under a wide range of network conditions with various workloads
(file download, video streaming).
• Under varying and in-the-wild network conditions, MPBond
reduces the file download time by 13%-35% compared to kibbutz
and COMBINE. The reduced download time also translates to lower
energy consumption.
•We show the need of three collaborative mobile devices to deliver
good QoE for bandwidth-hungry 360-degree video streaming. We
also demonstrate the effectiveness of MPBond’s dual mode.

Overall, MPBond is an efficient and practical system that in-
novates network-level collaboration among personal mobile de-
vices through applying the concept of distributed multipath. Com-
pared to other cross-device data sharing schemes [13, 35, 48], MP-
Bond offers several advantages including better performance as
boosted by the PAMS scheduler, application transparency, and
more flexibility (§3.4). Also none of the above studies has con-
sidered or experimented using wearable devices. Our contribu-
tions made in this work consist of novel use cases, the MPBond de-
sign/implementation, and comprehensive evaluation in real-world
settings. Note that MPBond is open-source on GitHub [11].

2 BACKGROUND AND RELATEDWORK
Multipath Transport is a promising technique that simultane-
ously leverages multiple network paths to accelerate data transfers.
MPTCP [46], the de facto multipath solution, brings a shim layer
between the socket interface and multiple underlying TCP subflows.
Operating at the transport layer, it requires no modifications to
both applications and networks. MPTCP’s value has been widely
evidenced by the joint uses of different paths including WiFi and
LTE [20], WiFi and WiGig [47], WiFi and Bluetooth [52], LTE and
5G [34], multiple WiFi links [17], multiple cellular carriers [30], and
multiple datacenter network paths [45], as well as the QoE benefits
to a variety of Internet applications such as video streaming [16, 24],
web browsing [23], and interactive apps [19, 29].

As the core component of a multipath transport system, a packet
scheduler distributes data onto different subflows established over
potentially heterogeneous network paths. MinRTT [40] is the de-
fault scheduler of MPTCP, which selects the path with available
space in congestion window and the minimum network RTT. There
are also studies on innovating the scheduling algorithm design
to improve MPTCP performance [21, 22, 29, 31, 47, 49]. Besides
MPTCP, there exist other multipath transport protocols such as
MPRTP [50], MPQUIC [18], MP-H2 [37], and MP-RDMA [33].

In above studies, all the subflows are established from a single
host. MPBond instead distributes the subflows to traverse multiple
mobile devices to facilitate the collaboration.

Multi-device Collaboration. Existing work havemade various
efforts to tackle the network-level collaboration among multiple
devices to deliver the data. Mobile kibbutz [35] leverages tethering
based MPTCP to enable a device to transmit network data through
another tethered device’s cellular network, while using its own
cellular interface. Specifically, on Android, a device (denoted as P)
can be tethered to another device (denoted as C) through either
over USB cable or wireless network. When wireless tethering is
used, Device P essentially acts as a WiFi AP (called SoftAP mode)
that receives traffic from Device C (the WiFi client) over WiFi, and
forwards it to Internet servers over P’s own LTE network, for uplink
traffic. The downlink direction operates in a similar manner. Device
C now has two local interfaces: a WiFi interface tethered to P and
its own LTE interface, upon which MPTCP can be applied.

PRISM [27] is a heavy-weight mechanism that strips a single
TCP flow over multiple WWAN links by significantly modifying
the TCP stack in the OS kernel and uses a custom proxy to utilize
multiple WWAN connections of different devices.

Other network-level collaboration solutions focus on specific
applications by functioning at the application layer. COMBINE [13]

MPBond: Efficient Network-level Collaboration Among Personal Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

collaboratively download files from HTTP servers among wireless
peers by using HTTP byte-range requests. MicroCast [26] targets at
video streaming. Cool-Tether [48] proposes energy-efficient cellular
tethering for web browsing traffic only.

MPBond instead is light-weight and offers several advantages
including better performance as boosted by its judiciously designed
scheduler, application transparency, and more flexibility. Also none
of the above work has been applied to wearables. Besides network-
level collaborations, there also exist systems [12, 38, 39] that share
other I/O resources among multiple mobile devices.

3 MOTIVATION
3.1 Incentives to Carry Multiple Devices
It is increasingly prevalent that users possess more than one mobile
device [7]. People oftentimes carry two smartphones due to various
reasons. For example, one phone is used for work and the other
is used for personal tasks – such a physical separation minimizes
the likelihood of business data being leaked or compromised [1, 5].
Another important reason for carrying two phones with different
carriers is that the carriers have complementary coverage [29]
so that the user can switch between the devices to enjoy better
performance. This is in particular popular in countries such as India
where prepaid plans are prevalent [6]. People may also carry their
old phones as portable WiFi hotspots [8], or have a second phone
with a roaming-friendly sim card [4]. Other reasons for having
two phones include mitigating battery anxiety, preventing theft,
providing extra storage, and backing-up sensitive data locally [2].
Note that people do not explicitly buy two new phones; instead
they typically use their old phones as a second device – around 46%
of Americans upgrade their smartphone every two years or less [3].

Compared to carrying two phones, an even more popular trend
is to wear a smartwatch while carrying a smartphone. In particular,
many smartwatches such as Apple Watch Series 4 and Samsung
Gear Frontier have built-in sim cards, allowing them to access
cellular data networks as a typical smartphone does. In addition,
there are many other common combinations of dual or triple mobile
devices with Internet access capabilities, such as smartphone+tablet
and smartphone+laptop+smartwatch. Despite their prevalence, the
potential of the devices’ network interfaces that are concurrently
operational is far from being fully exploited.

3.2 Benefits of Multi-device Collaboration
A network-level collaboration among multiple devices can signifi-
cantly improve the network performance. The basic idea is straight-
forward: when the last-mile wireless hop is the bottleneck (which
is typically the case), having multiple devices download data simul-
taneously can effectively improve the overall WWAN-side (wireless
wide-area network, i.e., the Internet) throughput. Meanwhile, the
content received by individual devices is merged over WLAN (wire-
less local-area network) and delivered to the application (§3.4).

We now experimentally demonstrate the benefit of WWAN-
side throughput aggregation, by measuring the performance of
concurrent multi-device data transfers, in particular when wearable
devices are involved – few prior studies have investigated that
to our knowledge. We consider three COTS mobile devices with
each using a different cellular carrier, as detailed in Figure 1. We
place them side-by-side (0.2 meters apart), and let them perform

concurrent bulk download from a nearby server over their own LTE
networks for 1 minute. On each device, we sample TCP throughput
every 200ms. The experiment was conducted in three locations:
a university office, a residential apartment, and a grocery store.
Figure 1 plots the throughput distributions of different devices
and their combinations. As we do not consider the WLAN-side
merging step in this measurement, the overall throughput achieved
by multiple devices is the sum of that for each individual device
(e.g., “AS” corresponds to the total throughput of A and S).

Figure 1 indicates that the three carriers exhibit different perfor-
mance at the three locations, with median throughput ranging from
6.2Mbps to 61.8Mbps. AssumingWLAN-side merging is not the bot-
tleneck, leveraging two interfaces improves the overall throughput
by 15.8% to 474.2%, and simultaneously using three devices boosts
the throughput by 63.1% to 695.4%, compared to using only a single
device (interface). The aggregated throughput can effectively sup-
port bandwidth-hungry applications such as UHD video streaming,
mobile VR [28], and mobile holographic communication [42]. We
also notice that there is no device whose network performance
constantly outperforms the other two in all three locations. There-
fore, one can also dynamically choose the best device based on its
live network condition in order to satisfy the app’s minimum QoE
requirement – this is supported by MPBond.

3.3 Networking Capability of Wearables
The experiment in Figure 1 involves an LTE-capable smartwatch.
Despite its decent throughput, it may still raise concerns about its
networking capability compared to full-fledged smartphones and
tablets. We therefore experimentally compare the LTE through-
put of two devices: an LG Urbane 2 smartwatch and a Nexus 6P
smartphone, both released in the same year. To ensure fair com-
parisons, we repeatedly insert the same sim card (AT&T) into the
two devices, and conduct 10 back-to-back TCP bulk download ex-
periments on them over LTE at the same location, to understand
the impact of the device capability on performance. The watch
indeed achieves a statistically lower throughput compared to the
phone: the smartwatch’s median throughput (29.9Mbps) is only
53.3% of the phone’s median throughput (56.1Mbps), likely due to
the watch’s small form factor that limits the antenna’s size and
tx/rx power. However, the absolute throughput values (median:
29.9Mbps, 90-th percentile: 31.4Mbps) indicate that commodity
smartwatches’ network interfaces can still contribute considerably
to collaborative content delivery in particular when other devices’
WWAN-side performance is poor. For example, Figure 1(a) and (c)
show that the smartwatch (A) yields a higher throughput than the
Sprint phone (S). Another potential concern regarding wearables is
energy, which we will assess in §6.8.

3.4 Do Existing Network-level Collaboration
Schemes Suffice?

We summarize existing network-level collaboration schemes (§2)
in Table 1. They suffer from several limitations as described below.

A Lack of Flexibility. A desired network-level collaboration
must be flexible to support different types of applications and re-
quire minimal changes to the mobile and network infrastructure
at the same time. From the application’s perspective, a tethered
device in kibbutz [35] performs as a simple layer-3 router, making

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Xiao Zhu et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80

A T S AT AS TS ATS

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

(a) Office

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

A T S AT AS TS ATS

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

(b) Residence

 0

 20

 40

 60

 80

 100

 120

A T S AT AS TSATS

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

(c) Grocery Store

 0
 5

 10
 15
 20
 25
 30

 0.5m 2m 5m

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Device distance

LOS
NLOS

Figure 1: Throughput distributions of different devices (carriers) and their combinations at 3 locations. (A: LG
Urbane Watch 2 with AT&T; T: Pixel 2 smartphone with T-Mobile; S: Samsung Galaxy S9 phone with Sprint)

Figure 2: WLAN throughput from
LG Urbane Watch 2 to Pixel 2 smart-
phone under different settings.

Table 1: Advantages of MPBond compared to existing systems designed for multi-device network-level collaboration.

Collaboration System WLAN Application Scheduling Server-side Mobile-side
Scheme Layer Layer Transparency Consideration Deployability Deployability
MPBond

L4
L4 Yes WWAN +WLAN standardized proxy mostly userspace, > 2 mobile

kibbutz [35] L3 Yes bottleneck standardized proxy kernel, up to two mobile
PRISM [27] L3 Yes bottleneck server + new proxy kernel, not available for mobile

COMBINE [13]
L5

L5 No bottleneck HTTP byte-range userspace, > 2 mobile
MicroCast [26] L5 No, video only bottleneck HTTP byte-range userspace, > 2 mobile
Cool-Tether [48] L3 No, web only bottleneck new proxy + byte-range userspace, > 2 mobile

it difficult to flexibly support various enhancement and policies
at layer-4/5 (§4.4). In addition, the tethering subsystem is usually
tightly coupled with the OS/kernel, and is therefore difficult to be
modified or extended. In Android, tethering has many practical lim-
itations. For example, (1) tethering to more than one device is not
supported, therefore, kibbutz supports at most two devices; (2) only
one tethering connection (either WiFi or Bluetooth, but not both)
can be established, hindering smooth handovers; (3) many carriers
and devices lock the tethering feature or only provide limited data
plan for tethering based hotspot. PRISM [27] relies on modified
kernel TCP stack for both the sender and receiver and a custom
PRISM proxy in the network, which incur significant deployment
overhead. And its WLAN architecture relies on WiFi Ad-hoc mode,
which is not available for Android and iOS smartphones and smart-
watches. Other schemes including COMBINE [13], MicroCast [26],
and Cool-Tether [48] require modification to the apps at layer-5 and
the server must support HTTP byte-range requests for the network
collaboration. Some of them are designed solely for a particular
type of application traffic.

Suboptimal Performance due to Fluctuating Network
Conditions. In kibbutz [35], the tethering approach, an end-
to-end path consists of two segments: WLAN and WWAN. Figure 1
shows that the WWAN-side (LTE) throughput is indeed fluctuat-
ing. We next experimentally study the WLAN-side performance.
Figure 2 shows the WLAN throughput when fetching data from an
LG Urbane Watch 2 to a Pixel 2 phone with their physical distance
varying under line-of-sight (LoS) and non-line-of-sight (NLoS)
settings1. WLAN throughput varies significantly and is oftentimes
lower than the WWAN throughput depicted in Figure 1. In other
words, due to their heterogeneous link characteristics and complex
1The distance between two devices can be large, e.g.,, when one device is charging or
with another family member.

interactions with the environment, WWAN andWLANmay exhibit
highly different performance and either can become the bottleneck,
in a very dynamic manner. The default tethering mechanism,
however, often poorly deals with such heterogeneity and dynamics
due to its simple layer-2/3 forwarding. For example, in tethering,
the effective data rate is always the minimum of the WWAN and
WLAN bandwidth; this can be improved by properly buffering
data at the device that decouples the WWAN and WLAN. We will
revisit this problem when describing MPBond’s solution (§4.2).
Besides, when making the scheduling decision, existing schemes
only consider the performance of the bottleneck link between the
WWAN andWLAN at a specific time, causing suboptimal workload
distribution and hence the multipath performance.

Excessive EnergyConsumption is one of the consequences of
the suboptimal network performance. This is in particular an issue
for wearable devices with small battery capacities. Even if the net-
work condition is stable, in the tethering approach the congestion
control is end-to-end, so the WWAN (WLAN) would be throttled to
the WLAN (WWAN) bandwidth for data download (upload) when
the WLAN (WWAN) is the bottleneck, causing prolonged WWAN
(WLAN) radio-on time leading to increased energy consumption.
Solutions that work at the application layer introduce idle network
period between consecutive HTTP byte-range requests, lowering
the energy efficiency.

4 MPBOND DESIGN
MPBond enables a user to jointly leverage her mobile devices to
access the Internet in an application-transparent manner. As shown
in Figure 3, MPBond involves two types of devices: one primary
device and one or more helper devices (referred to as “primary”

MPBond: Efficient Network-level Collaboration Among Personal Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Primary
ServerProxy

Pipe

Pipe

HS-Path

HS-Path

PS-Path

Helper

WLAN WWAN

 Subflow 1
 Subflow 2
 Subflow 3

Helper

Figure 3: System Architecture of MPBond.

and “helper(s)” for brevity). We discuss the scenario of multiple pri-
maries in §4.4.12. The client application, such as a file downloader
or a video player, only runs on the primary. TCP traffic from the app
is transparently intercepted by the MPBond service and scheduled
to transmit either over primary’s own interface or through helpers
with forwarding, i.e., different subflows shown in Figure 3. The
reverse direction works in a similar way by distributing the traffic
over multiple subflows from the MPBond-capable remote server
and merging the content on the primary. To be fully transparent
to Internet servers, the system can introduce an MPBond-capable
proxy which hides MPBond from remote servers by establishing
single-path connections with them. In the remainder of this pa-
per, unless otherwise noted, the term “server” refers to either an
MPBond-capable remote server or an MPBond proxy. Also, de-
ployed as an OS service on the primary and helpers, MPBond is
transparent to client-side apps as well.

We next describe how we address key design challenges of MP-
Bond: How to properly manage subflows (§4.1)? How to overcome
the limitations of the state of the art as described in §3.4 (§4.2)? How
to intelligently distribute the traffic onto multiple paths while ac-
counting for the heterogeneity between pipes and HS-Paths (§4.3)?
How to properly interface MPBond with upper layers while con-
sidering various user-specified policies (§4.4)?

4.1 Subflow Management
The high-level concept of MPBond subflows is similar to that of
MPTCP, except that (1) the subflows traverse different mobile de-
vices, and (2) the primary and helpers need to perform local data
exchanges to merge the received parts. We call the data channels
between the primary and helpers pipes. We also denote the net-
work paths between helpers and the server HS-Paths (Helper-server
Paths), and the network path between the primary and the server
(without a helper) the PS-Path (Primary-server Path). An end-to-
end subflow therefore traverses through either a PS-Path, or an
HS-Path and a pipe.

MPBond supports multiple concurrent pipes using different radio
technologies such as WiFi and Bluetooth. The pipe is established
by connecting the helper through WLAN to the primary which
acts as a WiFi AP, or pairing the helper to the primary through
Bluetooth. The scheduler dynamically selects a pipe by considering
factors including performance, reliability, and energy efficiency, or
simultaneously using multiple pipes to increase the data rate. We

2In this work, we assume the primary and all helpers are mutually trusted – the same
assumption that other collaboration schemes make. Standard security primitives such
as encryption and authentication can be applied to pipes to prevent attacks such as
session hijacking and eavesdropping.

will revisit this feature in §4.4. Similar to MPTCP’s subflows, the
pipes can be flexibly torn down or established, and they are loosely
coupled with a user TCP connection, allowing seamless migration
among pipes without interrupting the data transfer.

The overall handshake procedure in MPBond to establish a user
TCP connection with subflows between the primary and the server
leveraging helpers follows that in MPTCP, with additional control
messages over pipes to coordinate with the helpers. Specifically, for
the subflow involving an HS-Path and a pipe, the primary sends
an INIT_MP_JOIN (INIT_MP) message with the necessary client
and server information to the helper, allowing it to establish the
second (first) subflow through anMP_JOIN (MP_CAPABLE) mes-
sage. When the subflow is established, anMP_JOIN_OK orMP_OK
message is returned to the primary as an acknowledgement.

Error Handling.MPBond should be robust to a wide range of
errors. Compared to MPTCP, MPBond needs to further deal with
pipes’ failures. For example, on a subflow traversing through a
helper, a failure of either its HS-path or its pipe will cause the
subflow to be torn down and all its pending (unacknowledged) data
to be reinjected to another subflow (§4.3.4). This ensures that no
application data is lost due to either a WWAN orWLAN link failure.

4.2 Buffer Management and Helper-side
Connection Split

MPBond maintains buffers at both end points (the primary and
the server) to absorb network fluctuations and to accommodate
the subflows’ heterogeneous characteristics. Besides having these
buffers, we make an important design decision of setting up buffers
on helpers. Specifically, MPBond splits any subflow into two TCP
(sub)flows, one between the primary and the helper, and the other
between the helper and the server. The two flows thus cover the
pipe and the HS-Path, respectively. Although TCP splitting is not a
new idea [25, 51], we take this concept a step further by strategically
applying it to helper devices, in particular wearable devices, in the
context of mobile multipath transport.

Recall from §3.4 that when a helper is involved, the WWAN
and WLAN exhibit vastly different link characteristics. TCP split-
ting can effectively improve the performance in such a scenario by
shortening the TCP control loop [41]. More importantly, it allows
buffers to be set up between the two flows. Such buffers effectively
mitigate the negative performance impact caused by the bottleneck
shift on a subflow. To illustrate this, consider a simple example
where the pipe bandwidth increases due to the helper device being
moved closer to the primary (Figure 2), causing the pipe’s through-
put (Thpipe) becomes higher than that of the HS-Path (ThHS). If
there is a buffer at the helper, the buffered data can be transmitted
at Thpipe (instead of at ThHS when there is no buffer), leading to a
shorter data transfer time.

4.3 Pipe-aware Multipath Scheduler
As a critical component of a multipath transport system, a scheduler
determines how to distribute the traffic onto multiple paths. There
are several studies that improve the scheduler design in wireless
settings [22, 29, 31, 36]. However, directly applying them toMPBond
is difficult. First, most existing mobile multipath schedulers only
deal with two paths (WiFi and cellular), and many solutions such

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Xiao Zhu et al.

 0
 1
 2
 3
 4
 5
 6

 0 1 2 3 4 5 6 7 8 9 10

Buffering on the helper

Unbalanced completion time

T
ra

n
s
fe

re
d

 B
y
te

s
 (

M
B

)

Time (s)

Primary
Helper

Pipe

Figure 4: Performance of MPBond configured with the minRTT scheduler.

as [22] are inherently difficult to scale tomore than two paths, which
MPBond needs to handle. Second, none of prior studies considers
the pipes, which are unique in MPBond.

We design a Pipe-aware Multipath Scheduler (PAMS) for MP-
Bond. It differs from existing mobile multipath schedulers in two
aspects: PAMS is capable of scheduling an arbitrary number of
subflows, and it takes MPBond’s TCP splitting and helper-side
buffering (§4.2) into consideration when performing scheduling.

PAMS can be used by a wide range of applications such as file
transfer, video-on-demand (VoD), web browsing, and cloud synchro-
nization. All these applications involve transferring data chunks
such as a file, a video chunk, an image, and a web page, which need
to be delivered as fast as possible. Besides such chunked transfers,
another type of traffic pattern is real-time data streaming such as
live video streaming and low-latency gaming. Generally speaking,
the benefits of multipath transport on these applications require
switching the scheduling algorithm to a latency-favoring one such
as [21] and [29], and blindly applying multipath to them may incur
QoE penalty [36]. Designing a full-fledged scheduler tailored to the
MPBond architecture for such latency-sensitive traffic is beyond the
scope of this paper. Nevertheless, we provide easy-to-use interfaces
(§4.4) for users to specify policies such as letting delay-sensitive
traffic use single-path and giving it higher priority than other traffic
so as to prevent potential latency inflation.
4.3.1 MinRTT Considered Harmful. We first demonstrate the per-
formance issue of directly applying the default minRTT scheduler.
The primary establishes two subflows to a nearby server, one di-
rectly and the other through a helper. The downlink bandwidth of
the PS-Path, the HS-Path, and the pipe are configured to be 8Mbps,
10Mbps, and 5Mbps, respectively. The primary downloads from
the server a 10MB file using MPBond configured with minRTT.
Figure 4 shows the download progress. Recall that MPBond main-
tains a buffer at the helper. As shown, on the positive side, due
to TCP splitting and helper-side buffering, the bandwidth of all
three paths is fully utilized. On the negative side, under the default
minRTT scheduler, the two subflows cannot complete at the same
time: the helper subflow finishes about 4.5 seconds later than the
direct subflow. Note that in multipath transport, simultaneous sub-
flow completion is a necessary condition for achieving the optimal
download time [22]. This is because in the case where one subflow
finishes earlier than the other subflow, the fast subflow can always
“assist” the slow one, leading to an even reduced data transfer time.

The unbalanced subflow completion in Figure 4 is attributed to
the fact that the scheduler, which runs at the server, only monitors
the PS-Path and the HS-Path, and is unaware of TCP splitting
mechanism and the downstream pipe. In other words, minRTT

only tries to balance the completion time of the PS/HS-Path instead
of the two end-to-end subflows. In this particular experiment, since
the pipe bandwidth is lower than the HS-Path bandwidth, downlink
data will be buffered at the helper and drained slowly over the pipe,
leading to highly unbalanced subflow completion time.

A possible way of achieving simultaneous subflow completion
is to modify the subflow availability condition: a helper subflow is
considered to be available when the congestion window (CWND) of
both the HS-Path and the pipe have available space (minRTT only
considers the former). We implement this modification and find
that it indeed almost achieves simultaneous subflow completion.
However, by requiring an available CWND space for the pipe, this
approach loses the capability of buffering at the helper, a key feature
that MPBond should provide (§4.2). Therefore, the key challenge
that PAMS should address is to enable buffering at the helper while
achieving simultaneous subflow completion.
4.3.2 Deriving the Pipe-aware Delay (PAD). We now describe the
PAMS algorithm. We focus on the scheduler residing on the server
for downlink traffic. We first derive the end-to-end (E2E) packet
delay: at a given timeT , if a packet is scheduled over a given subflow,
how long does it take for the packet to arrive at the receiver (the
primary)? Let Bs and Bp be the number of bytes buffered at the
server and the helper, respectively, at T (they include both the
TCP send buffer and the userspace buffer maintained by MPBond);
let Thps , Thhs , and Thp be the measured downlink throughput of
the PS-Path, the HS-Path, and the pipe, respectively; let OWDps ,
OWDhs , and OWDp be the one-way delay of the corresponding
path. Given the above notions, the E2E delay for a direct subflow
is OWDps +

Bs
Thps

, including both the propagation delay and the
queuing/transmission delay. A subflow with a helper involves two
buffers. It takes T1 = Bs

Thhs
to drain the server-side buffer. After T1,

the helper-side buffer level changes from Bp to B′p = max{0,Bp −

ThpT1 + Bs }, which needs T2 =
B′p
Thp

to deplete. Therefore the
overall E2E delay is T1 +OWDhs +T2 +OWDp . Plugging T1 and
T2 into the above, we can derive the Pipe-Aware Delay (PAD) as:

OWDps +
Bs

Thps
, if i = 1

OWDhs +
Bs+Bp
Thp

+OWDp , if i > 1, BpBs + 1 >
Thp
Thhs

OWDhs +
Bs

Thhs
+OWDp , if i > 1, BpBs + 1 ≤

Thp
Thhs

where i is the index of the subflow (i=1 corresponds to the direct
subflow). Thps , Thhs , and Thp can be estimated as an exponential
weighted moving average of the ratio between CWND and RTT of
the corresponding path. In practice, as directly measuring OWD
is difficult, we approximate it using RTT

2 . The second and third
case in the above formula deals with B′p > 0 and B′p = 0, the two
conditions considered by the max function when calculating B′p .
4.3.3 The PAMS Algorithm. PAD gives us an estimation of the E2E
packet delay of a subflow. Now we consider how to use it to make
scheduling decisions. A possible approach is to modify minRTT into
“minPAD”, i.e., select the subflow with the minimum PAD as long as
the subflow is idle (i.e., the PS-Path or HS-Path has empty CWND
space). Although this approach outperforms minRTT, it still tries
to occupy all the HS-Path CWND space, thus may schedule more
data than the subflow’s actual capacity. We next show that it can

MPBond: Efficient Network-level Collaboration Among Personal Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

Algorithm 1: The Pipe-Aware Multipath Scheduler (PAMS).

Input: S = A set of N subflows. The algorithm executes when at least one
subflow is idle, i.e., its PS-Path or HS-Path has empty space in CWND.

Output: Packet to transmit on a subflow [packet, subf low].
1 packet ← GetN extPacket ();
2 Th[1..N] ← GetSubf lowThrouдhput ();
3 PAD[1..N] ← GetPipeAwareDelay();
4 Idle ← Get IdleSubf lows();
5 Busy ← GetNonIdleSubf lows();
6 tarдet ← Get IdleSubf lowW ithMinPAD();
7 Dif f ← 0;
8 for each subflow i in Busy do
9 if PAD[i] < PAD[target] then
10 Dif f + = (PAD[tarдet] − PAD[i]) ×Th[i]

11 if Diff > GetUntransmittedSize() then
12 return NULL;
13 else
14 return [packet, target];

be further improved through strategically deferring the scheduling
to make more judicious scheduling decisions.

Let us consider two cases that require different scheduling strate-
gies. First, when the server has a large amount of remaining data
in the meta buffer3 to send, it is important to improve the overall
bandwidth utilization (i.e., throughput) by keeping all the subflows
busy. In this case, PAMS applies minPAD: as long as there are any
idle subflows, the one with the minimum PAD will be immediately
selected and made busy. The second case is that when there is only
a small amount of remaining data, ensuring low-latency delivery
and simultaneous subflow completion time is more important than
maximizing the throughput. In this case, even when there is an idle
subflow, PAMS may skip it (i.e., deferring the scheduling) when
there are non-idle subflows that can shorten the delivery latency.

Following the above idea, we develop the PAMS algorithm listed
in Algorithm 1. As shown, Idle and Busy are the set of idle and
non-idle subflows, respectively, and target is the idle subflow with
the minimum PAD. Line 8 to 14 is the core part of the algorithm.
It determines if it is possible to deliver all to-be-scheduled bytes
in the meta buffer (or an application-defined data chunk, see §4.4)
over currently busy subflows before the target subflow completes.
For a given busy subflow i , its current buffered data will be drained
in PAD[i] time units, so the time budget allowing it to deliver
additional unscheduled data before the target subflow completes
is PAD[tarдet] − PAD[i]. The throughput of the subflow i , Th[i],
is the minimum of the HS-Path throughput and pipe throughput
when i > 1. The total number of unscheduled bytes that can be
delivered by all busy subflows before the completion of the target
subflow is therefore calculated as Di f f (Line 10). If such bytes
are more than the total number of unscheduled bytes, we defer
scheduling the current packet, allowing it to be later scheduled
over a currently busy subflow (Line 12). Doing so will shorten
its delivery time and facilitate simultaneous subflow completion.
Otherwise, we immediately schedule the packet over the target
subflow to ensure high bandwidth utilization (Line 14). Note that
Algorithm 1 is for the downlink traffic, and the scheduler for uplink
traffic is developed in a conceptually similar manner.

3In multipath transport, the (sender-side) meta buffer stores data passed from the
application but is not yet scheduled. The meta buffer is different from the per-subflow
buffer (Bs and Bp), which contains data that has already been scheduled to a subflow.

4.3.4 Data Reinjection. In multipath transport, reinjection is a
mechanism where data that has already been scheduled over one
subflow (A) is “reinjected” into another subflow B. This may occur
when, for example, A experiences unexpected performance drop
or failure, or B’s capacity suddenly increases. MPTCP employs a
conservative and fixed reinjection policy where packets are rein-
jected only when their associated subflow is terminated or the
receiver buffer is full. In MPBond, the involvement of multiple de-
vices, heterogeneous networks, and helper-side buffering makes the
network performance potentially more dynamic and fluctuating,
thus necessitating more judicious reinjection decisions.

We next describe MPBond’s reinjection scheme by detailing
when, who, and how to perform reinjection. Specifically, a rein-
jection is triggered when there are no unscheduled bytes and
maxPAD−minPAD

minPAD > η, where minPAD and maxPAD are the min-
imum and maximum PAD values across all subflows, respectively,
and η is a parameter. The rationale is as follows. Ideally, all sub-
flows’ PAD should be similar, as PAMS implicitly controls the buffer
levels (Bp and Bs) of the subflows to facilitate simultaneous sub-
flow completion (§4.3). When some subflows’ PAD becomes too
large or too small, it implies severe fluctuations of their network
performance. It is therefore the right time to launch a reinjection
for promptly rebalancing the subflows. Regarding η, it determines
the aggressiveness of the reinjection: reducing η incurs more fre-
quent reinjections at the cost of increased bandwidth utilization.
We empirically set η to 20%.

When a reinjection is triggered, MPBond moves up to r unac-
knowledged bytes with the highest sequence numbers from the
subflow with maxPAD back to the meta buffer4. We calculate r as
(maxPAD−minPAD)×B where B is the effective throughput of the
subflow with maxPAD. Intuitively, r is determined in such a way
that a slow subflow can catch up with the fastest subflow in terms
of PAD. These r “recalled” bytes are scheduled again by PAMS.

4.4 User/App Interfaces and Policy Engine
MPBond provides 2 types of interfaces to users and app developers,
respectively. First, it has a built-in console on the primary. This
allows users to pair/unpair with helpers, manage the pipes, grant
apps permission to use MPBond, monitor the devices’ runtime sta-
tus, and configure various policies (see below). In addition, MPBond
exposes APIs allowing 3rd-party apps to programmatically use its
service. The APIs include device/pipe management, status query
of devices/pipes, callback functions of important events such as a
change of the pipe configuration, and marking the boundaries of
application data chunks5. Note that using such APIs is optional:
MPBond is fully transparent to apps; the APIs just provide more
fine-grained manipulation and detailed monitoring of MPBond. For
example, based on its data rate, an app can dynamically switch
between pipes with different bandwidth (e.g.,WiFi vs. Bluetooth),
to reduce the energy footprint while meeting the QoE requirement.

4Data residing in the user-space buffer can be directly moved; data that stays in the
kernel-level buffers will become redundant.
5By default, the GetUntransmittedSize() function in Algorithm 1 returns the total size
of the to-be-sent data in the meta buffer. Developers can optionally define application-
layer data chunks to make GetUntransmittedSize() return the remaining bytes of the
current data chunk. This will expedite the delivery of each data chunk as opposed to
all data in the meta buffer as a whole.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Xiao Zhu et al.

MPBond allows users to flexibly specify various policies. Our cur-
rent prototype supports the following policies. (1) per-app whitelist.
MPBond takes a “whitelist” approach: users need to explicitly grant
permissions to apps and specify a (super)set of devices/pipes that
the app can access through MPBond. Typically this is a one-time
effort, provides good flexibility, and boosts security. (2) Resource
Usage.MPBond allows disabling a device (either helper or primary)
when its battery level drops below a threshold or its monthly cel-
lular data usage reaches a pre-defined cap. (3) Prioritization. Users
can configure rules that prioritize certain applications.
4.4.1 Dual Mode in MPBond. MPBond allows a device to have dual
roles of both a primary and helper, and multiple primary devices
may co-exist. We call this the dual mode, which enables the col-
laborating devices to better utilize their collective bandwidth in
particular when the primary devices generate traffic at different
time. Consider the following use case. Two close friends are watch-
ing different DASH videos, but each one’s individual device may
not provide sufficient bandwidth for its own video. To overcome
this limitation, the two devices can be paired up using the dual
mode: each device acts as the primary by fetching its own video,
and meanwhile also as the helper by delivering the content for
the other device. Since the two devices usually do not fetch video
chunks simultaneously, the video chunks requested by each device
can be downloaded over the two subflows with small probabilities
of competing for the bandwidth with video chunks requested by
the other device. This leads to improved QoE for both users.

In our current prototype, we realize the dual mode by running
multiple independent instances of MPBond, as either a primary or
a helper, on the same device. A limitation of this approach is that
each MPBond instance independently makes scheduling decisions,
which may be suboptimal due to a lack of global view of the net-
work condition and traffic patterns. This issue can be addressed
by introducing a lightweight “global manager” that coordinates all
MPBond instances [14, 41]. We leave this as future work.

5 IMPLEMENTATION
We implement MPBond on commodity Android smartphones and
Wear OS smartwatches. To support real-world evaluations with
commercial Internet servers that may not support MPTCP and mid-
dleboxes that may block it, we implement a multipath TCP proxy
in C/C++, following the methodology in [22]. Our implementation
of MPBond consists of 8K lines of C/C++ and Java code excluding
the base proxy system and is accessible on GitHub [11].

On the primary, most of the logic lies in a userspace MPBond
service. It establishes the PS-Path (pipe) connections with the MP-
Bond proxy (helpers). To support unmodified applications, we built
a lightweight kernel module using netfilter hooks that intercept
and redirect client application traffic to the MPBond service. WiFi
pipes are implemented as long-lived TCP connections between the
primary and helpers. We also implement Bluetooth pipes by lever-
aging the Android BluetoothSocket APIs to establish RFCOMM
connections. The MPBond helper module is implemented in the
userspace for the ease of deployment. It establishes HS-Path (pipe)
connections with the proxy (primary). For each subflow, we use
a circular queue to buffer packets in the userspace. These buffers
work with the in-kernel send/recv buffers of the HS-Path and pipes
together to achieve the performance and energy benefits.

A pipe is a long-lived data channel over which multiple user TCP
connections are multiplexed. To do this, we add a tiny header before
the application payload containing the TCP connection ID, message
length, and sequence number to identify individual TCP connec-
tions. PAMS is implemented as a userspace scheduling module
plugged into the MPBond proxy. The PS-Path and HS-Path infor-
mation is obtained at the server by leveraging Linux getsockopt API.
Pipe throughput is measured on the primary and sent to the helper
through an encapsulated control message. We implement a flexible
interface for a helper or the primary to determine when and which
pipe’s information to send to the proxy. In §6.2 we demonstrate
how this flexibility can be helpful instead of fixing the feedback
mechanism. Currently we use an out-of-band UDP channel to carry
pipe-specific information over the return path of HS-Path/PS-Path
for the sake of prototyping. In the future we will replace it with
TCP options that can be integrated to the HS-Path/PS-Path ACKs.
User-defined policies are enforced at a per-process basis. The MP-
Bond services on the primary looks up the process name of a given
flow by following the methodology in [43].

6 EVALUATION
We extensively evaluate MPBond under various network and de-
vice settings using synthetic and real apps to show the benefit of
network-level collaboration. We examine the effectiveness of key
design choices of MPBond through micro-benchmarks. We quanti-
tatively compare MPBond with kibbutz [35] and COMBINE [13],
the two major state-of-the-art solutions in Table 1, on network
performance, energy consumption and app QoE using commodity
smartphones and smartwatches over real LTE and WiFi networks.

6.1 Experimental Setup and Methodology
Our proxy supporting both MPBond and our implementation of
kibbutz [35], which employs tethering-based MPTCP, runs on a
commodity Ubuntu 16.04 server with 4-core 3.6GHz CPU and 16GB
memory. The proxy uses the decoupled CUBIC as the congestion
control algorithm (i.e., each path runs TCP CUBIC independently).
The server hosting files and video contents is in close proximity
to the proxy, and the path between them has very high network
bandwidth, not being the bottleneck of the end-to-end paths. For
COMBINE [13], as no proxy is required, multiple mobile devices
send HTTP byte-range requests directly to the server to fetch the
chunks of different ranges in the same object. The requests are
scheduled by a work-queue algorithm that sequentially downloads
chunks on each path and returns them to the primary device. For
COMBINE, we use a default chunk size of 256KB. For small file
download (e.g., 512KB) we also try two smaller chunk sizes (128KB
and 64KB) and report the best performance. By default, MPBond
uses PAMS as the multipath scheduler.

Our mobile devices include a Pixel 2 phone, a Nexus 6P phone,
and an LG Urbane 2 smartwatch.We perform evaluation of MPBond
using both emulated and real network conditions. To emulate cer-
tain network conditions, we use Linux tc to throttle the bandwidth
on real WWAN and WLAN, while capturing the latency dynamics
from commercial wireless networks. We also conduct experiments
using real LTE networks at different places. To understand the
impact on battery, we use full-fledged energy models [15, 32] to
estimate the energy consumption incurred by network transfers.

MPBond: Efficient Network-level Collaboration Among Personal Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

6.2 Microbenchmarks
We start with examining the key design choices of MPBond. We
focus on a two-device setting where a Pixel 2 with T-Mobile acts as
the primary and a Nexus 6P with AT&T acts as the helper.

Benefit of Helper-side Connection Split. One key design as-
pect of MPBond is to decouple the HS-Path and the pipe with a
buffer on the helper (§4.2), to absorb network fluctuations and ac-
commodate heterogeneous subflow characteristics. To understand
its impact on energy and performance, we compare MPBond with
kibbutz, which does not incorporate this design, using various fixed
scheduling ratio on subflows – transmitting p% of 4MB file over the
PS-Path and 1 − p% over the HS-Path and the pipe. We also derive
the optimal ratio offline from an exhaustive searching of p.

We start with stable network condition where the bandwidth of
both PS-Path and pipe are 5Mbps, and the bandwidth of HS-Path is
10Mbps. Figure 5 shows that MPBond reduces energy consumption
by 10%-22% compared to kibbutz using fixed scheduling ratio, while
achieving almost the same download time. This is because helper-
side connection split allows the transmission on HS-Path to finish
much earlier than that on the pipe, reducing the LTE radio-on time.

We then study the performance and energy impact under a
changing network condition. We start from the stable profile de-
scribed above, and after 2s, drop the bandwidth of HS-Path to
1Mbps. Figure 6 shows the download time and energy consumption
of downloading a 4MB file. Both the download time and energy
consumption are reduced when helper-side connection split is in
effect. The improvement is much higher when more data is sched-
uled to the HS-Path and the pipe at the time of sudden bandwidth
drop. This indeed confirms that the buffer between the split flows
absorbs the fluctuation of network condition.

Benefit of Flexible Feedback. MPBond allows pipe informa-
tion to be shared over the multiple HS-Paths and/or the PS-Path
(§5). A simple yet effective policy of sharing such information for
the 2-device case is to send the pipe’s information over both the
HS-Path and the PS-Path, when there’s data transfer on the corre-
sponding path. We call this policy “flexible” and compare it with
sending the pipe feedback over the HS-Path only, with different
timings: (1) when there’s data transfer on either HS-Path or pipe
(“fixed-always”), and (2) when there is data transfer onHS-Path only
(“fixed-on-demand”). We run an experiment of downloading a 4MB
file. Initially, PS-Path=5Mbps, pipe=5Mbps, and HS-Path=10Mbps.
After 2s, pipe bandwidth increases to 10Mbps. As Figure 7 shows,
“fixed-always” inflates the energy consumption since it keeps the
helper’s radio active by sending information feedback even if there
is no data transfer on the HS-Path. “Fixed-on-demand” mitigates
the issue by sending the feedback only when there is data transfer
on the HS-Path. However, it still incurs performance degradation as
the pipe information is not up to date. Instead, the “flexible” policy
keeps sending feedback over the PS-Path when there is no transfer
on the HS-Path, keeping the pipe information updated without
waking up the helper’s radio, thus improving both performance
and energy consumption.

Estimating Pipe Buffering. PAMS estimates the pipe buffer-
ing time of a packet based on the buffered data on the helper and
the pipe throughput (Bp

Thp
) (§4.3.2), instead of directly measuring

the packet buffering delay incurred by the helper, i.e., the time

between when a packet arrives at the helper and when it comes
out, which may not be up-to-date. To demonstrate the advantage
of such approach, we conduct file downloads of 4MB under a stable
network condition: the PS-Path and pipe bandwidth are 5Mbps,
and the HS-Path bandwidth is 10Mbps. With the estimation based
on the buffered data on the helper and the pipe throughput, the
file downloads take 3.6s on average, compared to 4.4s on average
using direct buffering delay measurements. The suboptimal perfor-
mance of the latter approach is due to the fact that the scheduler
always receives the stale buffering delay measurements which are
inaccurate, thus making the scheduling decisions suboptimal.

Reinjection Under Changing Network Condition. Reinjec-
tion in MPBond helps to reduce the download time under chang-
ing network conditions (§4.3.4). To examine the effectiveness, we
download a 4MB file under a changing network condition. At the
beginning of transfer, the PS-Path and pipe bandwidth are 5Mbps,
the HS-Path bandwidth is 10Mbps. After 2s, pipe bandwidth drops
to 1Mbps. When reinjection is enabled, the download time is 4.8s,
49% of the download time without reinjection (9.7s). The improve-
ment is attributed to the data on the slower pipe being reinjected
to the PS-Path so that the pipe transmission can catch up.

6.3 Stable Network Conditions
In this section, we evaluate the performance and energy efficiency
of MPBond under stable network conditions. The workload is down-
loading files with sizes ranging from 512KB to 2MB. We vary the
number of mobile devices from 1 to 3 and measure the download
time and energy consumption. We also study MPBond-Naive, an-
other variant of MPBond where the default minRTT scheduler
instead of PAMS is used. For each test, we repeat the download 20
times and report the mean value and the standard deviation.

Figure 9 shows the results under a common network bandwidth
setting. Each plot in Figure 9 has 7 clusters corresponding to dif-
ferent schemes with different number of devices. A cluster that is
closer to the bottom left has a lower energy consumption and a
shorter download time. Note that when calculating the energy con-
sumption, we consider all the mobile devices involved. Compared to
kibbutz, MPBond reduces the download time (energy consumption)
by 5%-11% (10%-14%), when there are 2 devices. When the number
of devices becomes 3, compared to kibbutz which cannot utilize
the extra device due to its architectural limitation, MPBond im-
proves the download time by 25%-30% while maintaining a similar
total energy consumption. Compared to COMBINE, MPBond brings
even higher improvements in terms of both download time and
energy consumption. With two (three) devices, MPBond improves
the download time by 15%-21% (12%-26%), and reduces the energy
consumption by 28%-38% (22%-25%). While MPBond-Naive has a
similar energy consumption compared to MPBond, it sacrifices the
performance due to suboptimal scheduling decisions that lead to
imbalanced subflow completion (§4.3). These improvements are
attributed to multiple design choices of MPBond including the sys-
tem and pipe realization at Layer 4, the helper-side connection split
and buffer, as well as the carefully designed multipath scheduler.

To better understand the impact of using more devices, we fur-
ther break down the total energy consumption for different schemes
in Figure 10. MPBond-Naive is omitted here for brevity. As shown,
using more devices does increase the total energy consumption,

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Xiao Zhu et al.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 p = 30% p = 50% p = 70% opt. sched

E
n
e
rg

y
 (

J
)

Scheduling decision

MPBond
MPBond w/o split

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

Bet
te

r

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Download time (s)

Split-50%

Split-30%

Split-70%
Split-optimal

Unsplit-50%

Unsplit-30%

Unsplit-70%
Unsplit-optimal

 8
 9

 10
 11
 12
 13
 14
 15

 2.5 3 3.5 4 4.5

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Download time (s)

fixed-always-on

fixed-on-demandflexible

 0

 0.5

 1

 1.5

 2

 2.5

Pixel 6P Pixel/
Dual

6P/
Dual

D
o
w

n
lo

a
d
 t
im

e
 (

s
)

Figure 5: Energy benefits of split un-
der stable network conditions.

Figure 6: Performance and energy
benefits of split under changing net-
work conditions.

Figure 7: Performance and energy
consumption for different feedback
mechanisms.

Figure 8: Dual Mode reduces
download time.

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0.5 0.6 0.7 0.8

Bet
te

r

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

(a) 512KB file download time (s)

MPBond-Naive

COMBINE (3)

kibbutz

Primary only

MPBond

MPBond (3)

COMBINE

 1.8
 2

 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6

 0.8 1 1.2 1.4

Bet
te

r
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

(b) 1MB file download time (s)

MPBond-Naive

COMBINE (3)

kibbutz

Primary only

MPBond

MPBond (3)

COMBINE

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1.2 1.4 1.6 1.8 2 2.2 2.4

Bet
te

r

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

(c) 2MB file download time (s)

MPBond-Naive

COMBINE (3)

kibbutz

Primary only

MPBond

MPBond (3)

COMBINE

Figure 9: Bulk download performance under stable network condition (PS-Path: 8Mbps, HS-Path: 10Mbps, pipe: 5Mbps): Single device (Pixel2), MP-
Bond/COMBINE w/ 2 devices (Pixel2+Nexus6P), MPBond/COMBINE w/ 3 devices (Pixel2+Nexus6P+LG2), and kibbutz (Pixel2+Nexus6P).

 0

 1

 2

 3

 4

 5

 6

 7

 8

P K M
 512KB

C M3 C3 P K M
 1MB

C M3 C3 P K M
 2MB

C M3 C3

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

Primary Helper 1 Helper 2

Figure 10: Energy breakdown of different schemes under stable network
condition (PS-Path: 8Mbps, HS-Path: 10Mbps, pipe: 5Mbps): Primary only (P),
kibbutz (K), MPBond (M), COMBINE (C), MPBond w/ 3 devices (M3), COM-
BONE w/ 3 devices (C3).

and COMBINE even increases the energy of the primary due to
its poor scheduler design that does not distribute the workload in
an efficient manner. MPBond instead reduces the energy on the
primary when more devices are used, while keeping a reasonably
higher total energy consumption. Compared to kibbutz, the energy
improvement of MPBond goes mostly to the helper device thanks
to its buffering strategy that reduces radio-on times.

To more systematically understand the benefits of MPBond
against kibbutz and COMBINE, we further carry out experiments
under more bandwidth combinations. We focus on the 2-device
case where we use Pixel 2 as the primary and Nexus 6P as the
helper, with the pipe bandwidth limited at 5Mbps. We first examine
the energy improvement of MPBond over kibbutz, with different
PS-Path and HS-Path bandwidths. Figure 11 plots the energy saving
results. With higher HS-Path bandwidth and lower PS-Path band-
width, MPBond’s energy benefit is maximized: for 1Mbps PS-Path
and 18Mbps HS-Path, energy consumption is reduced by 31%, 37%
and 47% for 512KB, 1MB, and 2MB download, respectively, while
the download time of MPBond is slightly better than kibbutz. The
energy savings mainly come from the effectiveness of helper-side

buffering that reduces the radio-on time of the faster link under het-
erogeneous WWAN and WLAN links. We then compare MPBond
with COMBINE by changing the PS-Path bandwidth. Figure 12 plots
the download time for both schemes. As shown, MPBond reduces
the file download time by 14%-46%, leading to energy savings of
24%-57%. Overall, as the heterogeneity between pipe and PS-Path
increases, the improvement brought by MPBond becomes larger.

6.4 Varying Network Conditions
We next evaluate how MPBond performs under changing network
conditions. We focus on the 2-device case where Pixel 2 is the pri-
mary and Nexus 6P is the helper.We first replay the realWWAN and
WLAN bandwidth profiles we collected in §3. Figure 13 shows the
download time of different schemes. Compared to kibbutz (COM-
BINE), MPBond reduces the download time by 21%-23% (29%-35%).
The corresponding energy consumption reduction is 18%-25% (16%-
23%), as shown in Figure 14. This again shows that leveraging helper-
side connection split, buffer management, and the judiciously de-
signed PAMS scheduler helps MPBond to achieve high network
utilization under fluctuating network conditions.

In-the-wild Experiments. To further understand the benefits
of MPBond, we conduct field test in real world settings. We focus
on comparing MPBond with kibbutz whose performance is closer
to MPBond. Specifically, we conduct experiments at two locations
by performing 1-min download for each scheme back-to-back at
each place and repeat it for 10 times. We measure the instanta-
neous throughput every 100ms. Figure 15 shows the throughput
distribution of MPBond and kibbutz. At the first location, MPBond
improves the median throughput by 13% compared to kibbutz. At
the second one, the improvement is 23%. MPBond also greatly re-
duces the low throughput periods, with a 90% improvement of 5th
percentile throughput over kibbutz in both locations, due to its
buffer management and helper-side connection split that exploit
the capacity of the fluctuating WWAN and WLAN links as much

MPBond: Efficient Network-level Collaboration Among Personal Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

1

5

9

13

6 10 14 18

P
S

-P
a
th

 B
W

 (
M

b
p
s
)

HS-Path BW (Mbps)

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 (

%
)

(a) 512KB download.

1

5

9

13

6 10 14 18
P

S
-P

a
th

 B
W

 (
M

b
p
s
)

HS-Path BW (Mbps)

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 (

%
)

(b) 1MB download.

1

5

9

13

6 10 14 18

P
S

-P
a
th

 B
W

 (
M

b
p
s
)

HS-Path BW (Mbps)

 0

 10

 20

 30

 40

 50

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 (

%
)

(c) 2MB download.

 0
 0.2
 0.4
 0.6
 0.8

 1

 512KB 1MB
PS-Path: 5Mbps

 2MB 512KB 1MB
PS-Path: 8Mbps

 2MB

 File Size

 512KB 1MB
PS-Path: 11Mbps

 2MB 512KB 1MB
PS-Path: 14Mbps

 2MB

N
o

rm
a

liz
e

d

d
o

w
n

lo
a

d
 t

im
e MPBond 				COMBINE

Figure 11: Energy consumption reduction: MPBond compared to kibbutz.
Figure 12: Performance of MPBond v.s. COMBINE under different BW
combinations: PS-Path: {5, 8, 11, 14} Mbps, HS-Path: 10Mbps, pipe: 5Mbps.

 0

 0.2

 0.4

 0.6

 0.8

 1

1MB 4MB

N
o

rm
a

li
z
e

d

d
o

w
n

lo
a

d
 t

im
e

MPBond

kibbutz

COMBINE

 0
 0.2
 0.4
 0.6
 0.8

 1

1MB 4MB

N
o

rm
a

liz
e

d

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n MPBond
kibbutz

COMBINE

Figure 13: Download time under
varying network condition.

Figure 14: Energy consumption un-
der varying network condition.

as possible (§4.2). The energy per byte is improved by 19% and 24%
at the two places respectively (not shown in the figure).

6.5 Video Streaming Performance
All experiments so far use bulk file download as the workload. We
now examine how MPBond helps improve the QoE and energy
efficiency of video streaming, one of the applications that dominate
mobile network traffic. We stream adaptive bitrate (ABR) videos us-
ing Exoplayer [9] to study the impact of different schemes on video
bitrate. We use three video settings: Big Buck Bunny with 2-second
segment duration (B2), Tears of Steel with 2-second segment dura-
tion (T2), and Tears of Steel with 6-second segment duration (T6).
Big Buck Bunny has 20 bitrates ranging from 46kbps to 4.2Mbps,
while Tears of Steel has 9 bitrates ranging from 253kbps to 10Mbps.
The total video duration for them are 596s and 734s, respectively.

We focus on the comparison between MPBond and kibbutz, both
of which don’t require modification to the video streaming appli-
cation. Figure 16 shows the video bitrate and per device energy
consumption. With two devices, MPBond reduces the energy con-
sumption by 13%-14% compared to kibbutz, while achieving similar
video bitrate. When the number of devices become three, MPBond
improves the video bitrate by 118% compare to kibbutz for two (T2
and T6) of the three settings. The rest one (B2) doesn’t show much
improvement since using two devices can already reach the highest
bitrate. Nevertheless, the per device energy consumption in B2 is
reduced because of the help of the third device. We further make
two observations in T2 and T6: (1) MPBond-Naive achieves even
lower energy consumption compared to MPBond and kibbutz, but
with the cost of a lower video bitrate. (2) While MPBond helps im-
prove the bitrate as the number of devices increases, the per device
energy consumption doesn’t get reduced like bulk download does,
because a higher bitrate corresponds to a larger video segment: this
is a classic tradeoff between QoE and data usage in ABR streaming.

360-degree Video Streaming. 360 degree video streaming has
a much higher bandwidth requirement compared to regular video

streaming and is an ideal use case for MPBond. For our experiment,
the video bitrate is fixed at 64 Mbps. Since the mobile devices
we have do not support the decoding of such high definition, we
instead employ a video player emulator to download the video
content without rendering it. We employ video stall ratio (stall time
divided by video length) as the QoE metric and vary the number
of device from 1 to 3 to study how much improvement MPBond
brings. For the single primary device the stall ratio is as high as 145%,
while using a helper helps reduce it to 27%. It’s further reduced
to 3% when three devices are used – this clearly shows that in
reality the fluctuating LTE oftentimes does not alwaysmeet the high
bandwidth requirement of 360-degree videos and further motivates
the need of MPBond to support more than 2 devices.

6.6 Leveraging the Dual Mode
We now evaluate the benefits of dual mode by involving two users,
each carrying a smartphone (Pixel 2/Nexus 6P) with LTE connectiv-
ity (T-Mobile/AT&T). Both of their LTE are capped to 5Mbps. The
pipe is unthrottled. To examine how much improvement MPBond’s
dual mode brings, the two users start the following workload at the
same time: sequential 1MB chunks are requested on each smart-
phone, with the inter-chunk time being a random number between
1 and 5 seconds, emulating the video streaming traffic. Figure 8
compares the chunk download time in dual mode of MPBond and
the download time when each of them download independently
without MPBond. As shown, the download time is improved by 32%
and 29% for Pixel 2 and Nexus 6P, respectively.

6.7 Indoor Applicability
Above experiments focus on MPBond’s main use case – outdoor
cellular networking. Now we consider indoor environments where
WiFi infrastructures most likely exist. When there’s a WiFi in-
frastructure, MPTCP over WiFi and LTE can be easily applied for
bandwidth aggregation. To understand how MPBond compares to
it, we conduct 4MB file download experiments at two different in-
door locations to study the performance and cellular data usage of
two schemes: (1) MPBond on a primary and a helper where the PS-
Path and the HS-Path are over LTE, pipe is over WiFi, (2) MPTCP
over WiFi and LTE on the primary. The two locations are with
different WiFi network conditions: location A has a high average
WiFi signal strength of -51dBm while location B receives weaker
WiFi signals (-68dBm on average). Across 10 back-to-back runs, the
average file download times of scheme 1 and 2 at location A are
1.5s and 1.0s, respectively. At location B, the corresponding down-
load times for scheme 1 and 2 are 1.2s and 1.6s, respectively. The
cellular data usage of scheme 2 at location A and B are 1.6MB and

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Xiao Zhu et al.

 5

 10

 15

 20

 25

 30

 35

 40

 45

Kibbutz
 Location 1

MPBond Kibbutz
 Location 2

MPBond

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

 200

 250

 300

 350

 400

 450

 500

 550

 3.5 4 4.5

E
n

e
rg

y
 p

e
r

d
e

v
ic

e
 (

J
)

(a) B2 bitrate (Mbps)

MPBond-Naive

kibbutz

Primary only

MPBond

MPBond (3)

 400

 450

 500

 550

 600

 650

 700

 3 5 7 9

E
n

e
rg

y
 p

e
r

d
e

v
ic

e
 (

J
)

(b) T2 bitrate (Mbps)

MPBond-Naive

kibbutz

Primary only

MPBond

MPBond (3)

 400

 450

 500

 550

 600

 650

 700

 3 5 7 9

E
n

e
rg

y
 p

e
r

d
e

v
ic

e
 (

J
)

(c) T6 bitrate (Mbps)

MPBond-Naive

kibbutz

Primary only

MPBond

MPBond (3)

Figure 15: Results of in-the-wild ex-
periments.

Figure 16: Video streaming QoE & energy. (PS-Path: 5Mbps, HS-Path: 10Mbps, pipe: 5Mbps): Single device
(Pixel2), MPBond (Pixel2+Nexus6P), MPBond w/ 3 devices (Pixel2+Nexus6P+LG2), and kibbutz (Pixel2+Nexus6P).

3.3MB, respectively. The results show that (1) MPBond always has
a higher cellular data (metered) usage (4MB) compared to scheme 2,
(2) depending on the WiFi network condition, MPBond may either
outperform (e.g., at location B) or underperform (e.g., at location A)
scheme 2. In indoor environments with good WiFi networks such
as location A, an MPBond user can choose to fall back to scheme 2,
the regular multipath over WiFi and LTE, e.g., by leveraging context
information [44]. We leave developing a full-fledged context-aware
framework for automatic switching between scheme 1 and 2 as
future work.

6.8 System Overhead and Energy Concerns
We measure the CPU utilization on the MPBond primary as well
as the helper when running the same workload as kibbutz: down-
loading a large file from remote server. We repeat the experiment
for 10 times and the average extra CPU utilization compared to
kibbutz is no more than 4% for both the primary and the helper.
We also answer the question left in §3.3 to examine the battery
drain of a wearable when acting as a helper. We stream a 15-min
video and examine the battery drain of a fully charged LG Urbane
2 smartwatch. We repeat it for 10 times and observed no more than
7% average battery drop: this shows the feasibility of our solution.

The previous energy measurement results in the evaluation sec-
tion are based on power models instead of hardware tools. To un-
derstand the measurement errors (i.e., model inaccuracies), we now
use a commercial power monitor [10] to measure the real energy
consumption. We employ a Samsung Galaxy S5 smartphone that
can to be hooked by the power monitor. We use it as the helper
and a Pixel 2 as the primary. Our workload is downloading a 4MB
file under the following network setting: PS-Path: 8Mbps, HS-Path:
10Mbps, pipe: 5Mbps. The power monitor measures the helper-side
energy consumption with both MPBond and COMBINE. We focus
on energy measurement on the helper due to the limited number
of power monitors we have and a helper is usually less powerful
and more energy-constrained (e.g., a wearable). We repeat the ex-
periment 10 times and the helper on average consumes 2.3J and
3.4J energy for MPBond and COMBINE, respectively. Compared to
the absolute energy numbers derived from models (1.9J and 2.6J),
the error can be as high as 24%. However, the difference between
model-based (27%) and power monitor-based (32%) relative energy
reductions (MPBond over COMBINE) is as low as 5%.

7 DISCUSSION
MPBond over Homogeneous Cellular Links. The experiments
in §6 are conducted with mobile devices connecting to different

ISPs, providing MPBond with ideal opportunities for bandwidth
aggregation. We now examine another case where an MPBond
primary (Pixel 2) and the helper (Nexus 6P) use the same cellu-
lar carrier (AT&T). We perform 1-min downloads at a residential
apartment using this setup and compare it with a single device
setup (Nexus 6P). The experiments are conducted back to back and
repeated for 10 times. The average throughput of using the Nexus
6P alone is measured to be 10.1Mbps. Leveraging MPBond improves
the average throughput to be 15.1 Mbps, with 8.2 Mbps coming
from the direct subflow and 6.9 Mbps from the indirect one. As we
can see, even if the throughput of the primary subflow decreases
with the addition of a helper device, there is a still fair amount of
gain on the overall throughput. This is because the eNodeB does
not always allocate all the resource blocks to a single UE, due to
the scheduling policy and the existence of other single-device users.
As a result, the MPBond user still gets a higher overall throughput
compared to using her one device.
MPBond over Congested Networks. The above indicates that
MPBond users typically get a higher share of the wireless resources
compared to single-device users, with devices connecting to either
a single carrier or multiple carriers. Now we discuss what happens
when people all use MPBond, especially when the wireless spec-
trum is crowded during peak hours. In this zero-sum situation, each
MPBond user cannot gain extra bandwidth share at the same time.
However, we expect its impact on MPBond’s use is limited given
the bursty nature of today’s Internet traffic. Besides, an MPBond
user can configure the number of helper devices to get a desired
share among other MPBond users with her affordable cost. Note
that this is a generic problem of mobile multipath and multi-device
network-level collaboration.

8 CONCLUSION
MPBond is an efficient network-level collaboration framework for
personal mobile devices. We develop mechanisms for connection
and buffer management, packet scheduling, and policy enforcement
and demonstrate the performance and energy benefits of MPBond
using real-world mobile devices, applications, and networks.

ACKNOWLEDGEMENTS
We would like to thank our shepherd, Aruna Balasubramanian, and
the anonymous reviewers for their valuable comments. This work
was partially supported by NSF under the grants CNS-1827940,
CCF-1628991, CNS-1629763, CNS-1917424, and CCF-1903880.

MPBond: Efficient Network-level Collaboration Among Personal Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

REFERENCES
[1] 2014. People for Whom One Cellphone Isn’t Enough. https://www.wsj.com/

articles/people-who-use-two-cellphones-1396393393.
[2] 2015. Doing the Two-Smartphone Shuffle. https://geekdad.com/2015/02/two-

smartphone-shuffle/.
[3] 2015. How Often Does the Average American Replace His or Her Smart-

phone? https://www.fool.com/investing/general/2015/07/15/how-often-does-
the-average-american-replace-his-or.aspx.

[4] 2016. 3 Reasons Why You Should Own A Second Cell Phone.
https://www.forbes.com/sites/forbesmarketplace/2016/03/17/3-reasons-
why-you-should-own-a-second-cell-phone/.

[5] 2017. 8 Frugal Reasons to Have Two Phones. https://www.thefrugalgene.com/
frugal-phones/.

[6] 2017. “Multiple phone personality” is trending. https://hackernoon.com/multiple-
phone-personality-is-trending-2c1670bd7367.

[7] 2018. Cisco Visual Networking Index: Forecast and Trends, 2017-2022 White Pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white-paper-c11-741490.html.

[8] 2018. Using Your Old Smartphone as a Mobile Hotspot. https://www.hellotech.
com/blog/using-old-smartphone-as-mobile-hotspot/.

[9] 2019. Exoplayer. https://google.github.io/ExoPlayer.
[10] 2019. Monsoon Power Monitor. https://www.msoon.com/online-store.
[11] 2020. MPBond github repository. https://github.com/XiaoShawnZhu/MPBond.
[12] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014. Rio: a

system solution for sharing i/o between mobile systems. In MobiSys. ACM.
[13] Ganesh Ananthanarayanan, Venkata N Padmanabhan, Lenin Ravindranath, and

Chandramohan A Thekkath. 2007. Combine: leveraging the power of wireless
peers through collaborative downloading. In MobiSys. ACM.

[14] Hari Balakrishnan, Hariharan S Rahul, and Srinivasan Seshan. 1999. An inte-
grated congestion management architecture for Internet hosts. ACM SIGCOMM
Computer Communication Review 29, 4 (1999), 175–187.

[15] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Y Charlie Hu, Maruti Gupta, and
Rath Vannithamby. 2015. Smartphone energy drain in the wild: Analysis and
implications. ACM SIGMETRICS Performance Evaluation Review 43, 1, 151–164.

[16] Xavier Corbillon, Ramon Aparicio-Pardo, Nicolas Kuhn, Géraldine Texier, and
Gwendal Simon. 2016. Cross-layer scheduler for video streaming over MPTCP.
In MMSys. ACM.

[17] Andrei Croitoru, Dragos Niculescu, and Costin Raiciu. 2015. Towards Wifi
Mobility without Fast Handover.. In NSDI. USENIX.

[18] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath quic: Design and
evaluation. In CoNEXT. ACM.

[19] Quentin De Coninck and Olivier Bonaventure. 2018. Tuning multipath TCP for
interactive applications on smartphones. IFIP Networking 2018 (2018).

[20] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan. 2014.
Wifi, lte, or both?: Measuring multi-homed wireless internet performance. In
IMC. ACM, 181–194.

[21] Alexander Frommgen, Tobias Erbshäußer, Alejandro Buchmann, Torsten Zim-
mermann, and Klaus Wehrle. 2016. Remp tcp: Low latency multipath tcp. In
Communications (ICC), 2016 IEEE International Conference on. IEEE, 1–7.

[22] Yihua Ethan Guo, Ashkan Nikravesh, Z Morley Mao, Feng Qian, and Subhabrata
Sen. 2017. Acceleratingmultipath transport through balanced subflow completion.
In MobiCom. ACM.

[23] Bo Han, Feng Qian, Shuai Hao, and Lusheng Ji. 2015. An anatomy of mobile web
performance over multipath TCP. In Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies. ACM, 5.

[24] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. 2016. MP-DASH:
Adaptive video streaming over preference-aware multipath. In Proceedings of
the 12th International on Conference on emerging Networking EXperiments and
Technologies. ACM, 129–143.

[25] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z Morley Mao,
Subhabrata Sen, and Oliver Spatscheck. 2013. An in-depth study of LTE: effect of
network protocol and application behavior on performance. In SIGCOMM. ACM.

[26] Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina Fragouli, and
Athina Markopoulou. 2012. Microcast: Cooperative video streaming on smart-
phones. In MobiSys. ACM.

[27] Kyu-Han Kim and Kang G Shin. 2005. Improving TCP performance over wireless
networks with collaborative multi-homed mobile hosts. In MobiSys. ACM.

[28] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion:
Engineering high-quality immersive virtual reality on today’s mobile devices. In
MobiCom. ACM.

[29] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal. 2018. RAVEN: Improving
Interactive Latency for the Connected Car. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking. ACM.

[30] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang, Xiangxiang Wang,
Meng Shen, and Rashid Mijumbi. 2018. A measurement study on multi-path tcp
with multiple cellular carriers on high speed rails. In SIGCOMM. ACM, 161–175.

[31] Yeon-sup Lim, Erich M Nahum, Don Towsley, and Richard J Gibbens. 2017. Ecf:
An mptcp path scheduler to manage heterogeneous paths. In CoNEXT. ACM.

[32] Xing Liu, Tianyu Chen, Feng Qian, Zhixiu Guo, Felix Xiaozhu Lin, Xiaofeng
Wang, and Kai Chen. 2017. Characterizing smartwatch usage in the wild. In
MobiSys. ACM, 385–398.

[33] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-path transport
for RDMA in datacenters. In NSDI. USENIX.

[34] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial 5G Performance on
Smartphones. In Proceedings of The Web Conference 2020.

[35] Cătălin Nicutar, Dragoş Niculescu, and Costin Raiciu. 2014. Using cooperation
for low power low latency cellular connectivity. In CoNEXT. ACM, 337–348.

[36] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z Morley Mao, and Subhabrata Sen.
2016. An in-depth understanding of multipath TCP on mobile devices: Measure-
ment and system design. In MobiCom. ACM.

[37] Ashkan Nikravesh, Yihua Guo, Xiao Zhu, Feng Qian, and Z Morley Mao. 2019.
MP-H2: A Client-only Multipath Solution for HTTP/2. In MobiCom. ACM.

[38] Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R Jeong, Steven Y Ko, and
Insik Shin. 2019. FLUID: Multi-device Mobile Platform for Flexible User Interface
Distribution. In MobiCom. ACM.

[39] Sangeun Oh, Hyuck Yoo, Dae R Jeong, Duc Hoang Bui, and Insik Shin. 2017.
Mobile plus: Multi-device mobile platform for cross-device functionality sharing.
In MobiSys. ACM.

[40] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. 2014.
Experimental evaluation of multipath TCP schedulers. In Proceedings of the 2014
ACM SIGCOMM workshop on Capacity sharing workshop. ACM, 27–32.

[41] Feng Qian, Vijay Gopalakrishnan, Emir Halepovic, Subhabrata Sen, and Oliver
Spatscheck. 2015. TM 3: flexible transport-layer multi-pipe multiplexing middle-
box without head-of-line blocking. In CoNEXT. ACM.

[42] Feng Qian, Bo Han, Jarrell Pair, and Vijay Gopalakrishnan. 2019. Toward Practical
Volumetric Video Streaming on Commodity Smartphones. In Proceedings of the
20th InternationalWorkshop onMobile Computing Systems and Applications. ACM.

[43] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen,
and Oliver Spatscheck. 2011. Profiling resource usage for mobile applications: a
cross-layer approach. In MobiSys. ACM.

[44] Valentin Radu, Panagiota Katsikouli, Rik Sarkar, and Mahesh K Marina. 2014.
A semi-supervised learning approach for robust indoor-outdoor detection with
smartphones. In SenSys. ACM.

[45] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. 2011. Improving Datacenter Performance and
Robustness with Multipath TCP. In ACM SIGCOMM.

[46] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How hard can it
be? designing and implementing a deployable multipath TCP. In NSDI. USENIX.

[47] Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak, Dimitrios Koutsonikolas,
and Joerg Widmer. 2019. MuSher: An Agile Multipath-TCP Scheduler for Dual-
Band 802.11 ad/ac Wireless LANs. In MobiCom. ACM.

[48] Ashish Sharma, Vishnu Navda, Ramachandran Ramjee, Venkata N Padmanabhan,
and Elizabeth M Belding. 2009. Cool-tether: energy efficient on-the-fly wifi
hot-spots using mobile phones. In CoNEXT. ACM.

[49] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong Dai, Fanzhao Wang, and
Kai Zheng. 2018. STMS: Improving MPTCP Throughput Under Heterogeneous
Networks. In USENIX ATC. 719–730.

[50] Varun Singh, Saba Ahsan, and Jörg Ott. 2013. MPRTP: multipath considerations
for real-time media. In Proceedings of the 4th ACMMultimedia Systems Conference.
ACM, 190–201.

[51] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-Bassett, David Choffnes, and
Ramesh Govindan. 2015. Investigating transparent web proxies in cellular net-
works. In International Conference on Passive and Active Network Measurement.
Springer, 262–276.

[52] Xiao Zhu, Yihua Ethan Guo, Ashkan Nikravesh, Feng Qian, and Z Morley Mao.
2019. Understanding the Networking Performance of Wear OS. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 3, 1 (2019), 3.

https://www.wsj.com/articles/people-who-use-two-cellphones-1396393393
https://www.wsj.com/articles/people-who-use-two-cellphones-1396393393
https://geekdad.com/2015/02/two-smartphone-shuffle/
https://geekdad.com/2015/02/two-smartphone-shuffle/
https://www.fool.com/investing/general/2015/07/15/how-often-does-the-average-american-replace-his-or.aspx
https://www.fool.com/investing/general/2015/07/15/how-often-does-the-average-american-replace-his-or.aspx
https://www.forbes.com/sites/forbesmarketplace/2016/03/17/3-reasons-why-you-should-own-a-second-cell-phone/
https://www.forbes.com/sites/forbesmarketplace/2016/03/17/3-reasons-why-you-should-own-a-second-cell-phone/
https://www.thefrugalgene.com/frugal-phones/
https://www.thefrugalgene.com/frugal-phones/
https://hackernoon.com/multiple-phone-personality-is-trending-2c1670bd7367
https://hackernoon.com/multiple-phone-personality-is-trending-2c1670bd7367
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.hellotech.com/blog/using-old-smartphone-as-mobile-hotspot/
https://www.hellotech.com/blog/using-old-smartphone-as-mobile-hotspot/
https://google.github.io/ExoPlayer
https://www.msoon.com/online-store
https://github.com/XiaoShawnZhu/MPBond

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Motivation
	3.1 Incentives to Carry Multiple Devices
	3.2 Benefits of Multi-device Collaboration
	3.3 Networking Capability of Wearables
	3.4 Do Existing Network-level Collaboration Schemes Suffice?

	4 MPBond Design
	4.1 Subflow Management
	4.2 Buffer Management and Helper-side Connection Split
	4.3 Pipe-aware Multipath Scheduler
	4.4 User/App Interfaces and Policy Engine

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup and Methodology
	6.2 Microbenchmarks
	6.3 Stable Network Conditions
	6.4 Varying Network Conditions
	6.5 Video Streaming Performance
	6.6 Leveraging the Dual Mode
	6.7 Indoor Applicability
	6.8 System Overhead and Energy Concerns

	7 Discussion
	8 Conclusion
	References

