
Flare: Practical Viewport-Adaptive 360-Degree Video
Streaming for Mobile Devices

Feng Qian1∗ Bo Han2 Qingyang Xiao1 Vijay Gopalakrishnan2

1Indiana University 2AT&T Labs – Research

ABSTRACT
Flare is a practical system for streaming 360° videos on
commodity mobile devices. It takes a viewport-adaptive ap-
proach, which fetches only portions of a panoramic scene
that cover what a viewer is about to perceive. We conduct an
IRB-approved user study where we collect head movement
traces from 130 diverse users to gain insights on how to de-
sign the viewport prediction mechanism for Flare. We then
develop novel online algorithms that determinewhich spatial
portions to fetch and their corresponding qualities. We also
innovate other components in the streaming pipeline such as
decoding and server-side transmission. Through extensive
evaluations (∼400 hours’ playback on WiFi and ∼100 hours
over LTE), we show that Flare significantly improves the QoE
in real-world settings. Compared to non-viewport-adaptive
approaches, Flare yields up to 18× quality level improvement
on WiFi, and achieves high bandwidth reduction (up to 35%)
and video quality enhancement (up to 4.9×) on LTE.
ACM Reference Format:
Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018.
Flare: Practical Viewport-Adaptive 360-Degree Video Streaming
for Mobile Devices. In MobiCom ’18: 24th Annual Int’l Conf. on
Mobile Computing and Networking, Oct. 29–Nov. 2, 2018, New Delhi,
India. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3241539.3241565

1 INTRODUCTION
360° video, a.k.a. panoramic or immersive video, is becoming
popular on commercial video platforms such as YouTube
and Facebook [10, 13]. It brings an immersive experience to
users by projecting the panoramic content onto the display.

* Current affiliation: University of Minnesota – Twin Cities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom’18, October 29–November 2, 2018, New Delhi, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5903-0/18/10. . . $15.00
https://doi.org/10.1145/3241539.3241565

The user’s viewport (visible area) is determined in real time
by her viewing direction and the Field of View (FoV) of the
headset, and changes as she moves her head.

The challenge with 360° videos, however, is that they are
much larger (4× to 6×) than conventional videos under the
same perceived quality due to their panoramic nature. There-
fore, streaming 360° videos is challenging, especially over
wireless (e.g., cellular) networks where bandwidth can be
scarce. In addition, streaming 360° videos incurs higher CPU,
GPU, and energy overhead on the client side compared to
the streaming of regular videos [37].
In this paper, we present the design, implementation,

and evaluation of Flare, a practical 360° video stream-
ing system for commodity mobile devices. Flare adopts
a viewport-adaptive approach: instead of downloading the
entire panoramic scene, it predicts the user’s future view-
ports and fetches only portions that cover what the viewer is
about to consume. As a result, Flare can significantly reduce
the bandwidth usage, or boost the video quality given the
same bandwidth compared to the state-of-the-art. Moreover,
Flare is a general 360° video streaming framework that does
not depend on a specific video encoding technology.

The high-level principle of viewport-adaptive 360° stream-
ing is not new [23, 48]. However, there are indeed numerous
technical challenges that need to be addressed. To the best of
our knowledge, Flare is one of the first full-fledged systems
that realize this principle on commodity smartphones. The
key design aspects of Flare consist of the following.
First, an essential component in Flare is to predict users’

future viewports (e.g., via head movement prediction). We
systematically investigate real users’ head movement as well
as how to efficiently perform viewport prediction (VP) on
mobile devices. We conduct an IRB-approved user study
involving 130 diverse users in terms of age, gender, and ex-
perience. To the best of our knowledge, this is the 360° video
head movement dataset with the longest viewing time the
research community has ever collected. We intend to make
the dataset publicly available. Using this dataset consisting
of 4420-minute 360° video playback time, we study a wide
spectrum of Machine Learning (ML) algorithms for VP. We
then design lightweight but robust VP methods for Flare by
strategically leveraging off-the-shelf ML algorithms (§3).

https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1145/3241539.3241565
https://doi.org/10.1145/3241539.3241565

Second, a prerequisite for viewport-adaptive streaming
is to spatially segment 360° video contents into smaller por-
tions called tiles. We evaluate the overhead incurred by re-
encoding a set of 360° videos, and find out that for most
videos we tested, the overhead is acceptable – typically
around 10% of the original video size. This indicates that
from the encoding perspective, tile-based streaming is feasi-
ble and potentially beneficial for most 360° videos (§4).
Third, Flare needs to make decisions in both the spatial

domain (which tiles to fetch) and the quality domain (which
qualities to fetch), both jointly forming a huge search space.
Doing so is in particular challenging in the face of imperfect
VP and network capacity estimation. We decouple the two
dimensions by first determining the to-be-fetched tiles based
on the VP – oftentimes we need to strategically fetch more
tiles than those predicted to tolerate the VP inaccuracy (§4).
We then formulate an optimization algorithm to determine
the tile quality. The algorithm takes into account multiple
conflicting objectives of maximizing the tiles’ bitrate, mini-
mizing the stalls, and minimizing the cross-tile quality dif-
ferences. We also conduct meticulous optimizations for our
rate adaptation scheme to accelerate it at runtime in order to
adapt to users’ potentially fast-paced head movement (§5).

Fourth, we bring a number of innovations when integrat-
ing the above components into a holistic system. Flare fol-
lows the Dynamic Adaptive Streaming over HTTP (DASH)
paradigm with all key logic on the client side. It leverages
multiple hardware decoders that are available on modern
smartphones. It utilizes a video memory cache that stores
decoded tiles, in order to facilitate smooth viewport transi-
tions as the displayed tiles change (§6). It also considers the
non-trivial decoding delay in the rate adaptation formulation
(§7.2). On the server side, we enhance its networking sub-
system by making it adaptive to the continuous tile request
stream as the user changes her viewing direction (§7.1, §8).

We implemented Flare on Android smartphones and Linux
servers in 14,200 lines of code. We conduct extensive evalu-
ations via real-world experiments over WiFi through more
than 400 hours’ playback. We also test Flare on commercial
cellular networks at 9 locations in 6 U.S. states with ∼100
hours’ playback. We highlight key evaluation results below.
• On networks with constrained bandwidth (emulated over
WiFi), Flare improves the video quality by a factor between
1.9× and 18×, compared to non-viewport-adaptive schemes.
The average stall of Flare is less than 1 second per minute.
•On real LTE networks, Flare simultaneously achieves band-
width reduction (from 26% to 35%), quality level improvement
(around 22%), and comparable stall duration, compared to
non-viewport-adaptive schemes. In locations with poor cel-
lular conditions, Flare can improve the quality level by up
to 4.9× while reducing the stall time by 22%.

1

Raw
Frame

Tile

Figure 1: Chunk, tile, frame, and tile segmentation (4×6 tiles).

• Flare’s system-level optimizations are highly effective. Em-
ploying multiple H.264 decoders reduces the stall duration
by 90%, compared to using a single decoder. Our server-side
transport-layer enhancement reduces the stall by 39%.
•We conduct best-effort implementations of other tile-based
streaming algorithms in recent proposals [29, 47]. Compared
to them, Flare achieves significantly better performance such
as up to 98.7% reduction of stall time over LTE.
Overall, we demonstrate that it is entirely feasible to de-

velop a viewport-adaptive 360° video streaming system on
commodity mobile devices without relying on specialized
infrastructure or modifications on video encoding. We sum-
marize our key contributions as follows.
•A user study with 130 users and diverse 360° video contents,
to understand real users’ head movement dynamics.
•The design and implementation of Flare, which consists of a
novel framework of the end-to-end streaming pipeline. Flare
introduces new streaming algorithms, and brings numerous
system-level and network-level optimizations. We manage to
integrate all design components into a holistic mobile system
running on commodity smartphones.
• Extensive evaluations of Flare in real WiFi and cellular net-
works with diverse conditions, and comparison with other
viewport-adaptive and non-viewport-aware approaches.

A demo video of Flare can be found at: https://goo.gl/huJkXT

2 MOTIVATION AND FLARE OVERVIEW
Almost all commercial 360° video content providers today em-
ploy a monolithic streaming approach that fetches the entire
panoramic content regardless of the user’s viewport [21, 48].
This approach is simple but causes considerable waste of the
network bandwidth, as a user consumes only a small por-
tion of the panoramic scene in her viewport. To overcome
this limitation, several recent studies propose to make 360°
video streaming viewport-adaptive by fetching only content
in the predicted viewport, or fetching in-viewport content at
a higher quality compared to non-viewport content. Within
different viewport-adaptive approaches [23, 26, 42, 47, 48,
52, 62], we adopt the tile-based solution [42, 48] due to its
conceptual simplicity and potential benefits. As illustrated in
Figure 1, an original video chunk is segmented into tiles. A
tile (i.e., the yellow area) has the same duration and number
of frames as the chunk it belongs to, but occupies only a small
spatial portion. Each tile can be independently downloaded

Viewport
Prediction

(VP, §3)

Network
Capacity

Estimation

Project, Render, Display

Decoding Scheduler (§7.2)

Real-time Head
Movement Reading

Requests to Server Tiles from Server

Remote Server (§7.1) C
lie

n
t/

Se
rv

er
 B

o
u

n
d

ar
y

Decoded Frame Buffer (§6)

Encoded Tile BufferEncoded Tile Buffer
MP4 MP4 MP4 MP4
Encoded Tile Buffer
MP4 MP4 MP4 MP4

DecodersDecoders

Tile
Scheduler

(§4)

Rate
Adaptation

(§5)

Download Planner

Figure 2: The Flare system.

and decoded. Therefore, ideally a player needs to download
only tiles that cover a user’s viewport trajectory.

The high-level idea behind Flare is intuitive: the player pre-
dicts a user’s head movement (i.e., viewport) and prefetches
the tiles to be consumed by the user. Despite this intuitive
idea, there remain numerous challenges in designing such a
system. First, Flare should be highly responsive to fast-paced
viewport changes and viewport prediction (VP) updates. Sec-
ond, targeting the ABR (adaptive bitrate) streaming, Flare
needs a practical and effective rate adaptation algorithm
that determines the qualities of tiles by considering both
the network capacity and head movement, yielding a poten-
tially huge search space. Third, Flare is designed for off-the-
shelf mobile devices whose processing capabilities are much
weaker than PCs. In particular, the total time budget for the
overall processing pipeline, which is performed entirely on
the client, is typically less than 1 second as limited by the
time window that can yield a reasonable VP accuracy (§3.2).
Figure 2 sketches the system design of Flare. The client

performs VP in real time (§3). Then a very important com-
ponent on the client side is the Download Planner. It takes as
streamed input the VP and network capacity estimation, and
computes the set of tiles to be downloaded (§4) as well as
their desired qualities (§5). When tiles arrive from the server,
they are properly buffered, decoded, projected, and rendered
to the viewer, as shown in the RHS of Figure 2. We describe
this process in §6 and §7.2. Compared to the client side, the
server is relatively “dumb” – simply transmitting the tiles per
clients’ requests. This client-server function partition follows
the DASH streaming paradigm, which facilitates scalability
and ease of deployment, as to be detailed in §7.1.

3 VIEWPORT PREDICTION
3.1 User Study
To understand how real users watch 360° videos, we conduct
an IRB-approved user study involving 130 subjects.

Video Selection.We select ten popular 360° videos1 from
YouTube (each having at least 2M views as in March 2018).
1 A list of the videos: wild animals [4], sci-fi [1], sea [2], roller coaster [7],
island [11], racing [5], house [9], concert [19], tennis [16], skydiving [18].

Dataset Videos Users Views Sample
Len # # Len Freq.

Qian et al. [48] 4 10min 5 20 50min 250Hz
Corbillon et al. [25] 5 6min 59 295 354min 30Hz
Lo et al. [43] 10 10min 50 500 500min 30Hz
Bao et al. [23] 16 8min 153 985 492min 7-9Hz
Wu et al. [55] 18 44min 48 864 2112min 100Hz
Our dataset 10 34min 130 1300 4420min 200Hz

Table 1: Comparing our dataset with existing ones.

The videos span a wide range of genres containing both low-
motion and high-motion scenes. They are all in 4K resolution,
using Equirectangular projection, and encoded in standard
H.264 format. Their bitrates range from 12.9 to 21.5 Mbps,
and their playback duration ranges from 117s to 293s.

Participant Recruitment. 133 voluntary subjects, with
ages ranging from 18 to 68 years old, participated in our user
study and were asked to watch all videos. 100 subjects were
students, staff, and faculty members from a large university
in the U.S., and the remaining users were from a large com-
pany. 42% of them are female and 48% of them have never
seen 360° videos before. Regarding the age distribution, the
numbers of subjects who are teenagers, 20s, 30s, 40s, 50s, and
60s are 5, 79, 27, 13, 2, and 4, respectively. 35% of the subjects
are older than 30. Each subject receives a small amount of
compensation for his/her participation.

Data Collection. Each subject watches the ten videos in
an arbitrary order by wearing a Samsung Gear VR headset
with a Samsung Galaxy S8 (SGS8) smartphone plugged into
it. The player collects head orientation data (pitch, yaw, and
roll) from built-in sensors at a high sampling rate (∼200 Hz).
When watching the videos, a user is free to turn her head
around. A user may pause for an arbitrary amount of time
after watching each video. Also, if a user experiences motion
sickness, she may exit the study at any time. 3 such users did
not finish the study. They are not counted into the 130 users.

Dataset.We process the head movement traces and create
a dataset to be used in our study. We convert the raw data
into the spherical coordinates (latitude and longitude2) using
a downsampling rate of 100Hz in order to reduce the process-
ing overhead and the possibility of overfitting in VP models.
In total, we have 1,300 (130×10) views from the subjects and
the total duration of our collected trace is 4,420 minutes.
As shown in Table 1, compared to other head movement
datasets [23, 25, 43, 55], ours is the most comprehensive and
diverse dataset for 360° videos with the longest viewing time.
To demonstrate the diversity of our participants and

videos, the two subplots in Figure 3 show the angular ve-
locity distributions for randomly selected videos and users,
respectively. As shown, the distributions differ noticeably
across both videos and users. The mean angular velocity
2In this study we consider only the pitch and yaw, as users rarely change the
roll (i.e., rotating head along the Z axis) when watching VR contents [23].

0 20 40 60 80 100
Angular Velocity (°/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

video 4
video 1
video 10
video 3
video 5

0 20 40 60 80 100
Angular Velocity (°/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

user 83
user 21
user 24
user 27
user 53
user 94

0 20 40 60 80 100
Angular Velocity (°/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

female users
male users

(a)

0 20 40 60 80 100
Angular Velocity (°/s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

first-time users
non-first-time users

(b)

Figure 3: Angular velocity for sampled videos & users. Figure 4: Comparing (a) female vs.male, and (b) first-time vs. non-first-time users.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prediction Accuracy (pw=0.2)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

SVR
Static
RR
LR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prediction Accuracy (pw=0.5)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
SVR
Static
RR
LR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prediction Accuracy (pw=1.0)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LR
Static
SVR
RR

0.0 0.2 0.4 0.6 0.8 1.0
Prediction Accuracy (pw=3.0)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

LR
Static
SVR
RR

Figure 5: VP accuracy for four prediction window (pw) sizes: 0.2s, 0.5s, 1.0s, and 3.0s using four ML algorithms, assuming 4×6 tiles.

of the head rotation for playback sessions across all users
and videos is 10.3°/sec with the standard deviation being
7.4°/sec. We also compare the head movement speed between
first-time and non-first-time viewers, as well as between
male and female subjects. As shown in Figure 4, we did not
observe noticeable difference from their distributions of the
angular speed, likely because watching 360° videos is quite
intuitive and straightforward.

3.2 VP Method for Flare
At a high level, there are two opportunities that we can lever-
age for VP. First, we can use an individual user’s historical
head movement to predict her viewport in the near future
(e.g., 1 to 2 seconds) [23, 48]; second, we can possibly use mul-
tiple users’ head movement trajectories to identify “popular”
spatial regions to facilitate content prefetching in the distant
future [42]. In Flare, we focus on the former and leave the
crowd-source based prediction for future work.
Several prior studies indicate that VR users’ head move-

ment is indeed predictable [23, 48].We follow a typical online
Machine Learning (ML) paradigm by using the most recent
hw (history window) seconds worth of head movement data
to predict the viewport in the next pw (prediction window)
seconds. This involves both training and testing. A design
decision we need to make is to determine which ML algo-
rithm to use: we can either use cheap but less accurate ML
algorithms to perform frequent VP, or use more accurate
ML algorithms that however may run slowly on commodity
smartphones. In our design, we take the former approach in
order to adapt to the fast-paced head movement.

Following this idea, we consider four off-the-shelf ML al-
gorithms: Static, Linear Regression (LR), Ridge Regression (RR),
and Support Vector Regression (SVR). Static simply uses the
current head position to approximate one in the future with-
out any “real” prediction; LR treats the viewport trajectory

in pw as time series and estimates the future viewport using
a linear model; RR is a more complex variant of LR and can
better cope with overfitting [50]; SVR leverages Support Vec-
tor Machine (SVM) to perform regression [51]. For LR, RR,
and SVR, the latitude and longitude trajectories are predicted
separately. Also, instead of using a fixed hw , we find that
dynamically adjusting the hw to be proportional to pw yields
better VP accuracy. We therefore empirically set hw = pw/2
in our implementation (changing the coefficient does not
qualitatively affect the results).

Prediction Results.We apply the above methods to all
1,300 head movement traces collected from our user study.
The four plots in Figure 5 show the distributions of the VP
accuracy for four pw sizes: 0.2s, 0.5s, 1.0s, and 3.0s, across
all traces. We define a VP instance to be accurate if and
only if Πviewed ⊆ Πpredicted, where Πviewed is the set of tiles
actually perceived by the viewer (the ground truth), and
Πpredicted is the tile set determined based on the predicted
lat/lon, assuming a 4×6 tile segmentation. In Figure 5, each
data point on a CDF curve is the VP accuracy for one head
movement trace (a user watching one video). The per-trace
VP accuracy is defined as the number of accurate VPs di-
vided by the total number of VPs performed. As shown, due
to users’ head movement randomness, accurate VP is only
achievable for short pw . Also, different ML algorithms ex-
hibit diverse performance for different pw . For example, LR
performs quite well for short pw but its accuracy degrades
when pw increases, likely due to overfitting that can be miti-
gated by RR. For the four pw sizes, the median VP accuracy
achieved by the best of the four ML algorithms is 90.5%,
72.9%, 58.2%, and 35.2%, respectively. Based on the results in
Figure 5, Flare uses LR for pw < 1 and RR for pw ≥ 1 due to
their lightweight nature and reasonable accuracy.

4 TILE SCHEDULER
Measuring Tile Segmentation Overhead. Before detail-
ing the design of our tile scheduler, we first examine the tile
segmentation procedure itself. The number of tiles incurs a
tradeoff: since a tile is an atomic downloadable unit, having
too few tiles (too coarse-grained segmentation) limits the
bandwidth saving, while having too many tiles (too fine-
grained segmentation) leads to larger video sizes due to the
loss of cross-tile compression opportunities. We use the 10
videos in our user study to quantify such an overhead. For
each video, we first preprocess it into the standard DASH
format using a chunk duration of 4 seconds as recommended
by prior work [34, 44, 59]. We then perform two lossless
operations on the preprocessed videos: (1) further reducing
the chunk duration to 1 second, and (2) tile segmentation.
We need the first operation because a tile with a shorter du-
ration offers more flexibility for tile-based streaming, but the
negative side is increased chunk size due to denser I-frames
(the first frame of each tile/chunk must be an I-frame).

Figure 6 shows the per-video segmentation overhead (mea-
sured as the fraction of increased bytes) for 1-second 4×6,
4×4, and 2×4 tiles, using the 4-second DASH chunks as the
comparison baseline. As shown, the overhead ranges from
about 5% to 15%, with the median across 10 videos being
7.3%, 9.3%, and 10.4% for 2×4, 4×4, and 4×6 tiles, respectively.
These are acceptable because the benefits provided by tile-
based streaming overweigh the incurred overhead, as to be
demonstrated later. The segmentation overhead is taken into
account by all evaluations conducted in this paper.

Download PlannerOverview.As shown in Figure 2, the
Download Planner is responsible for determining (1) which
tiles are to be fetched, and (2) what their qualities should be.
In theory, these two aspects need to be jointly considered.
But a key design decision we make is to separate these two
decision processes, i.e., first calculating the to-be-fetched tiles
(the job of the tile scheduler), and then determining their
qualities (rate adaptation). The rationale behind this is two-
fold. First, jointly considering both leads to a big inflation
of the decision space and thus the algorithm complexity;
second, (1) is more important than (2) because a missing tile
will inevitably cause stalls. We describe the tile scheduler in
the remainder of this section and the rate adaptation in §5.

Clearly, if the viewer’s head movement is perfectly known
beforehand, then the required tiles can be calculated de-
terministically. In reality, however, they can be only esti-
mated from the imperfect VP. Since the head movement
keeps changing, Flare needs to continuously perform VP.
Calculating the Tile Set. Assume that at time T0, VP

is invoked to update the to-be-fetched tile list. Instead of
performing a single prediction, Flare conducts multiple pre-
dictions for time t = T0 + δT , T0 + 2δT , ..., T0 +mδT , in order

to construct the trajectory of the user’s future viewports. In
other words, when invoked at T0, the VP module outputsm
tuples (ti ,ϕi , λi) each indicating the predicted lat/lon at time
ti = T0 + iδT . Note that as the prediction window (whose
length ismδT) moves forward, the same timestamp will be
predicted multiple times at different VP invocations, as long
as the timestamp is within the prediction window. The tile
scheduler then translates each tuple into a tile set, whose
chunk number is determined by ⌊ti/d⌋ (d is the chunk du-
ration) and its tile numbers are determined by ϕi (predicted
latitude), λi (predicted longitude), and the viewport-to-tile
mappings (pre-generated based on the projection algorithm,
as exemplified in Figure 7). Finally, the set of tiles to be
fetched consists of the union of all predicted tile sets across
allm predictions, excluding those already received. Regard-
ing selectingm and δT , ideallym should be large and δ be
small. Considering the system overhead and the difficulty of
VP in the long term (§3.2), we pick δT =100ms andm=30.

Tolerating VP’s Inaccuracy. The above procedure se-
lects all tiles that fall into any viewport along the predicted
trajectory. But doing so is not sufficient because VP may
make errors. Flare employs three mechanisms to tolerate
inaccurate VP. The first one is naturally provided by the
tiles themselves: since a tile must be fetched as long as any
of its frames intersects with any predicted viewport, often-
times only a small portion of a fetched tile is consumed. This
wastes some bandwidth but helps absorb inaccurate VP as
long as the error does not cross a tile.
The second mechanism dealing with inaccurate VP is to

fetch additional tiles that are not in the originally predicted
tile set. We call them “out-of-sight” (OOS) tiles because if the
prediction is accurate, a viewer will not see those tiles. We
next describe the methodology of selecting OOS tiles. We
assume that for each viewport in the predicted trajectory, all
tiles (including those not in the viewport) are ranked by their
“perceptive importance”. Intuitively, tiles that fully appear
inside the viewport are ranked the highest, followed by tiles
that partially overlap with the viewport, then tiles near the
viewport, and finally “far-away” tiles that are in the opposite
direction of the viewport. We describe how to rank the tiles
shortly. For a given viewport v , Flare fetches its k tiles with
the highest ranks. k is calculated as follows:

k(v) = c0(v) + ⌈ξ (1 − S)(n − c0(v))⌉ (1)

where c0(v) is the number of tiles that overlap with the view-
port. k(v) must be at least c0(v), otherwise the user’s view
becomes incomplete at v . For the remaining n − c0(v) OOS
tiles where n is the total number of tiles per chunk, we fetch
the top ξ (1 − S) fraction of them, again based on the tiles’
ranks. ξ is a parameter controlling the aggressiveness of
fetching OOS tiles; S ∈ [0, 1] quantifies the recent VP accu-
racy. Intuitively, the second part in Eq. 1 adjusts the number

2×4 4×4 4×60

0.05

0.10

0.15

0.20

Ov
er

he
ad

(b) FX = 100˚ FY = 90˚ (c) FX = 130˚ FY = 110˚ (d) FX = 150˚ FY = 130˚

2 3

6 7

10 11

2 3

6 7

10 11

2
3

6 7

10 11

1
5 1

5

9

0 1 2 3
4
8

12

5 6 7
9 10 11

13 14 15

0 1 2 3
4
8

12

5 6 7
9 10 11

13 14 15

lat=23˚ lon=18˚: 6 7 10 2 11 3 5 1 9 0 14 15 4 13 8 12

(Highest Class) Class-0 Class-3 (Lowest Class)

(a) Unprojected Tiles

An entry in the database:

Cls-1 Cls-2

Figure 6: Segmentation overhead. Figure 7: Ranking the tiles and deriving classes for a viewport. Assume 4×4 tiles and 4 classes.

of OOS tiles to be fetched adaptively based on S : if the re-
cent VP becomes accurate (inaccurate), then less (more) OOS
tiles will be scheduled for fetching. S is computed as the
Exponentially Weighted Moving Average (EWMA) of the VP
accuracy defined as J (L̂,L). J () is the Jaccard Index (a metric
measuring set similarity [49]); L is the actually consumed tile
set for the current frame, and L̂ is its prediction conducted
moments before (we use 200ms).

S ← α · J (L̂,L) + (1 − α) · S (2)
The third mechanism tackling the imperfect VP is to let

an earlier inaccurate prediction be fixed by a more recent
prediction that is more accurate. We describe it in §7.1.

Ranking the Tiles. A viewport is defined as (ϕ, λ, Fx , Fy)
where ϕ and λ are the latitude and longitude of the view-
ing direction, respectively, and Fx and Fy are the (constant)
width and height of the viewport. We now describe given
a viewport, how to rank all tiles based on their “perceptive
importance”. Recall the ranks are used in selecting OOS tiles,
and it will also be used in rate adaptation. We begin with
tiles that overlap with the viewport. We call them Class-0
tiles, and rank them according to their visible areas in the
viewport. For example, Figure 7(a) plots a 4×4 tile segmen-
tation configuration. Figure 7(b) shows the tiles that a user
sees when looking at ϕ=23°, λ=18° with Fx=100° and Fy=90°.
Tile 6 ranks the highest because it occupies the largest area,
followed by Tile 7, and so on. To rank the remaining OOS
tiles, we expand the FoV by increasing Fx and Fy (ϕ and λ
remain the same). Then additional tiles (e.g., Tiles 5 and 1
in Figure 7(c)) may become visible. We call these new tiles
Class-1 tiles, and also rank them according to their areas in
the extended viewport. We then use the same approach of
extending the viewport to rank tiles in lower classes (Class-2
and so on). For all remaining tiles, they belong to the low-
est class and are ranked by the spherical distance between
their centroid and the center of the viewport. Intuitively, the
above procedure creates a total order relation on the overall
tile set for each viewport. Also, it is important to note that
the whole ranking process is performed offline and cached
in a database for runtime use, as exemplified in Figure 7.

Putting Everything Together. We summarize the over-
all process of scheduling an ordered list of tiles to fetch. The

following steps are performed on a per-frame basis to adapt
to the viewer’s continuous head movement. (1) Compute the
Jaccard Index and use that to update S (Eq. 2) and hence-
forth k(v) (Eq. 1). (2) Perform VP form future timestamps
{ti = T0 + iδT }. (3) For each ti , perform the database lookup
using its predicted lat/lon as the key; select the ordered sub-
list containing the first k(v) tiles from the database entry. (4)
Merge the sublists across {ti } into the final (ordered) list con-
taining the tiles to fetch. In the merged list, tiles are sorted
by their predicted occurrence time (the primary key) and
their ranks as calculated in Figure 7 (the secondary key). (5)
Pass this merged list to the rate adaptation algorithm.

5 RATE ADAPTATION
In non-360° video streaming, numerous rate adaptation
schemes have been proposed [34, 36, 44, 59]. Flare’s rate
adaptation approach is inspired by MPC [59], which pro-
vides a principled model that jointly considers different QoE
objectives for Internet videos. Leveraging the high-level
concept from MPC, we develop a practical formulation for
rate adaptation of tile-based 360° video streaming.
Defining QoE Metrics. For DASH-style non-360° videos,

commonly used QoE metrics consist of stall duration (the
shorter the better), video quality (the higher the better), and
inter-chunk quality switches (the fewer the better). Since we
are not aware of any prior study that specifically focuses on
360° videos’ QoE metrics, we propose the following metrics
that our algorithm will optimize.
• The stall duration, denoted asTstall . A stall happens when
either the buffer is empty or a required tile is missing, in
which case the player freezes the playback to fetch that tile.
• The average bitrate that is actually consumed by the viewer.
It is computed as

B =
∑
i, j

w(i, j)b(i, j)/VideoLength (3)

where b(i, j) is the playback bitrate of Tile j of Chunk i , and
w(i, j) ∈ [0, 1] is the fraction of the tile (averaged across all
its frames) that fully or partially overlaps with the viewport.

• The average quality level (with 0 being the lowest) of all
consumed tiles, defined as

Q =
∑
i, j

1(w(i, j))l(i, j)/VideoLength (4)

where l(i, j) is the quality level of Tile j of Chunk i , and
1(x)=1 if and only if x > 0 otherwise 1(x)=0. We find this
metric is largely correlated with B but is easier to compute.
• The quality switch consists of two parts: the inter-chunk
switch (I1) and the intra-chunk switch (I2). The former cap-
tures the quality switch between neighboring chunks. It is
defined as the average change of the average consumed tiles’
qualities between consecutive chunks:

I1 =

∑
i

���∑j 1(w (i, j))l (i, j)∑
j 1(w (i, j)) −

∑
j 1(w (i−1, j))l (i−1, j)∑

j 1(w (i−1, j))

���
VideoLength

(5)

The intra-chunk switch quantifies the variation of qualities
of consumed tiles belonging to the same chunk:

I2 =
∑
i

StdDev {l(i, j)|∀j : 1(w(i, j)) > 0} /VideoLen (6)

Then the overall quality switch is calculated as a weighted
sum of I1 and I2. We empirically set both weights to 1. Note
that for 360° videos streamed using the conventional ap-
proach (one tile per chunk), I2 is always 0.

The above metrics are either identical to or inherited from
those for regular videos. Most of them are intuitive and easy
to reason. The likely exceptions are inter- and intra-chunk
switch, whose QoE impacts for 360° videos are not fully ex-
plored yet. As shown in Figure 7, even when the tiles have
the same quality level, they will have different perceived
qualities after projection that either enlarges or shrinks each
tile. When the tiles’ quality levels differ, their perceived qual-
ities after projection become even more complex. We will
study this in future work.

Problem Formulation. With the QoE metrics defined,
the rate adaptation problem can be formulated as the fol-
lowing: determining the quality level for each to-be-fetched
tile (determined in §4) so that the overall utility, defined as a
weighted sum of the aforementioned metrics, is maximized:

To Maximize: Utility = Q −wi (I1 + I2) −wsTstall (7)

wherewi andws are weights that penalize quality switches
and stalls, respectively.

We next convert the above formulation into its online ver-
sion, with two design points being highlighted below. First,
the online version only considers the tiles within a limited
window ofm · δT seconds (§4). Second, the online version
should deal with tiles with different viewing probabilities. Re-
call that oftentimes OOS tiles (with classes lower than 0) are
scheduled for fetching. The OOS tiles have lower probabili-
ties of being viewed compared to Class-0 tiles, and henceforth

should be treated differently in the rate adaptation formu-
lation. We adopt a simple approach of weighing tiles based
on their classes. In Eq. 4, we replace l(i, j) with l(i, j)c(i, j)
where c(i, j) is the weight of the tile’s class, defined as the
highest class that the tile belongs to across all viewports in
the predicted trajectory. The higher the class is, the higher its
weight is. We empirically find the following weight function
Class-k → 1/2k works well in practice. For I1 and I2, due to
the ways they are computed, we should not directly modify
their l(i, j) with c(i, j). So we rewrite I1 as the weighted sum
of the class-wise inter-chunk quality switches with Class-k
weighted by 1/2k ; we rewrite I2 as the weighted sum of intra-
class quality switches for each class, plus the weighted sum
of inter-class quality switches within each chunk.

Finding a Solution Fast. Having the online version of
the formulation, we now consider how to solve it. The key
challenge is to find a solution fast: due to the continuous
head movement, the optimization should be invoked at a
much higher frequency compared to conventional DASH
algorithms. We next describe two techniques that boost the
optimization performance.
First, although the rate adaptation is only making deci-

sions for a limited window, the search space is still excessive
due to the large number of tiles (e.g., up to 72 tiles in a
3-second window for 4×6 tiles). We thus impose two addi-
tional constraints: (1) all tiles belonging to the same class
should have the same quality level, and (2) the quality level
never increases as the class becomes lower. Intuitively, these
two constraints reduce the search space by performing rate
adaptation on a per-class basis instead of on a per-tile basis,
making it feasible for Flare to perform exhaustive search. For
example, for 5 quality levels and 4 classes (Figure 7), there
are only 70 ways to assign quality levels to classes. Moreover,
the first constraint helps reduce the quality level changes.
Second, minimizing the stall duration is critical but mod-

eling the exact stall duration is not trivial. Again for perfor-
mance consideration, we change the stall component from
the objective function (Eq. 7) to a series of constraints (one
per each scheduled tile) to ensure that none of the tiles incurs
stalls. Specifically, let T0 be the current time and τi be the
time when the i-th tile in the ordered tile list (derived by
the tile scheduler) will appear in a viewport or its associated
OOS tile set for the first time. Then we add one constraint
for the i-th tile as follows:

ζ · EstBW · (τi −T decoding
i −T0) ≥

i∑
j=1

TileSize(j) (8)

where EstBW is the estimated bandwidth, and ζ ∈ (0, 1] is the
“damping coefficient” tolerating the bandwidth prediction
errors. Eq. 8 dictates that there should be enough time to (1)
download all tiles from the first to the i-th tile in the tile list

(tiles are transferred sequentially) and to (2) decode the i-th
tile. We model the decoding time T decoding

i in §7.2.
After applying the above two optimizations, Flare is able

to invoke the rate adaptation at a very fast pace (e.g., for
every video frame) on commodity smartphones. The rate
adaptation algorithm tests all possible ways of assigning
quality levels to classes, and selects the one yielding the
highest utility under the aforementioned constraints. If no
such an assignment exists, Flare will assign the lowest level
to all classes.

Leveraging Buffer Information. The client-side buffer
(the Encoded Tile Buffer in Figure 2) contains downloaded
tiles that the user is expected to view according to the VP.
The buffer has the same length as the VP window, which is
mδT = 3 seconds in our current implementation. The client
will not download any tiles beyond the prediction window
due to a lack of VP. A buffered tile that is not consumed by
the viewer will be discarded.
Prior studies indicate that considering the client-side

buffer status can improve the robustness of DASH rate
adaptation [34]. Flare therefore includes a mechanism that
leverages the buffer occupancy level to reduce the risk
of stalling. We define the buffer occupancy level o as the
fraction of predicted Class-0 tiles (i.e., those to appear in
any viewport according to the current tile scheduling) that
have already been downloaded. Clearly, o may change from
time to time as a user moves her head. Having the buffer
occupancy level computed, Flare adjusts the damping coeffi-
cient ζ in Eq. 8 as ζ = o · (ZU B − ZLB) + ZLB . Intuitively, ζ
varies between a lower bound ZLB and an upper bound ZU B
depending on o. When the buffer occupancy level is low, ζ
decreases. In this way, the tiles’ quality levels are lowered,
thus reducing the risk of stalling.

6 TILE DECODING AND RENDERING
Let us now consider how to play the tiles after receiving
them from the server (the RHS in Figure 2). This is trivial for
conventional video playback: each chunk’s (only one) tile
is sequentially fed into the decoder, whose output frames
will then be sequentially rendered at a fixed FPS (frames per
second). Flare differs in that a viewport typically contains
multiple independently-encoded tiles that are played at the
same time. A natural idea is to use multiple decoders, each
processing a tile in a synchronous manner: all decoders con-
currently decode different tiles of frame i in the viewport;
when they all finish, the entire frame i is rendered by stitch-
ing different decoded portions together; then all decoders
move on to frame i + 1, and so on. This approach is sim-
ple to realize, but suffers from three issues. First, it requires
many concurrent decoders that a commodity mobile device
may not be able to support (§9.4). Second, synchronization
also worsens the overall performance, because a decoder

finishing early has to wait for other decoders. Third, the
key problem occurs when the viewport changes due to head
movement. Let us assume that a viewport change occurs
at frame f , and that change is large enough so the set of
visible tiles will change. For example, a new tile y comes
into the viewport. Due to the inter-frame dependency, the
decoder cannot directly decode frame f in y. Instead, it must
begin with the very first I-frame in y and “fast forward” to
f , incurring a potentially long delay.
Our Proposed Approach for Tile Decoding. We real-

ize that the above disadvantages come from the constraint
where a decoder decodes only tiles that are currently being
played3. In other words, the playback and decoding are syn-
chronized, and this forces all decoders to be synchronized as
well. Our proposed design instead makes decoding and play-
back asynchronous. It allows decoders to cache the decoded
frames of tiles to be played in the future by introducing a
Decoded Frame Buffer (DFB). Specifically, the decoding sched-
uler (§7.2) dynamically selects a received tile and sends it
to an idle decoder. The decoded frames are not necessar-
ily consumed right away; instead they can be stored in the
DFB residing in the video memory. When a cached frame is
needed during the playback, it is fed into GPU for immediate
rendering with negligible delay incurred.

Our proposed design offers several advantages. First, the
number of decoders can be greatly reduced; in theory we
only need one decoder (if it is fast enough) to decode all tiles.
This is because by making decoding and playback asynchro-
nous, we do not need to link each decoder to just one tile.
In other words, there is no one-to-one association between
visible tiles and decoders. Second, our design ensures smooth
playback when visible tiles change, as long as future tiles are
properly cached in DFB. Third, we find that asynchronous
decoding also dramatically improves the performance com-
pared to synchronous decoding (up to 2.7× higher FPS when
tested on SGS 7, using a local 4K video with 2×4 tiles).
A downside of using the DFB is the high video memory

usage (§9.6), since the decoded frames are stored in their raw
(uncompressed) format. However, Flare only stores a small
number of tiles in DFB (as limited by the short prediction
window of VP), making our approach feasible for 4K and
even 8K videos as to be demonstrated in our evaluation.

Projection and Rendering. We now describe what hap-
pens at the end of the streaming pipeline. Flare utilizes a
high-precision timer that fires at a fixed frequency (e.g., 30
FPS) to render each frame. When a timer event occurs, the
player first checks whether all (sub)frames associated with
the tiles in the current viewport are in the DFB. If not, a

3Decoders may have their internal buffers, but the buffers are typically very
small and not accessible by applications.

stall occurs, and one additional timer event will be sched-
uled when all missing subframes are ready. Otherwise, Flare
projects each subframe to draw the corresponding scene in
the viewport. This is done by rendering a series of triangle
meshes with their vertices being actually projected. After all
subframes are rendered, the stitched frame is displayed.

7 OTHER DESIGN ASPECTS OF FLARE
7.1 Client-Server Communication
After a single invocation of tile scheduling and rate adap-
tation, the client has determined an ordered list of tiles to
be fetched as well as each tile’s desired quality level. Flare
then consolidates them into a single request. If this request is
different from the most recent one that has been transmitted,
Flare encodes the request using delta encoding and trans-
mits it to the server. The bandwidth overhead of the uplink
request stream is negligible. Upon the reception of a request,
the server immediately starts transmitting the tiles from the
beginning of the tile list. The server guarantees that no tile
is transmitted more than once.
Due to the short inter-request time, typically the server

cannot finish transmitting the entire tile list before a new
request arrives. Very importantly, when receiving a new
request, the server must discard the tile list of the current
request that the server might be working on (except for
the tile that is being transmitted, if any). This is the third
mechanism of tolerating VP’s inaccuracy (the first two have
been described in §4). Intuitively, it leverages the observation
that the temporally closer a viewport is from now, the higher
accuracy the VP can achieve (§3.2). Therefore, as the server
discards out-of-date predictions in the distant future (recall
the server transmits the tiles chronologically from near to
far), an earlier inaccurate prediction can be potentially “fixed”
by a more recent prediction that is more accurate.

7.2 Decoding Scheduler and the Interplay
between Decoding and Rate Adaptation

The Decoding Scheduler’s job is to select from the tiles
waiting at the Encoded Tile Buffer (Figure 2) the most im-
portant ones to decode. It reuses the tile scheduling results
(§4) that contain the predicted tiles sorted chronologically.
Specifically, when any decoder becomes idle, the decoding
scheduler will send to that decoder a tile with the highest
rank in the currently predicted tile list. In other words, the
decoding scheduler selects the best estimated tile with the
closest playback deadline to appear in the viewport.

Estimating T
decoding
i in Eq. 8. Recall that as shown in

Figure 2, the received (encoded) tiles are processed in three
steps: (1) waiting: they wait at the Encoded Tile Buffer when
all decoders are busy; (2) decoding: some tiles are selected
to be decoded; and (3) rendering: some decoded tiles stored

in DFB are rendered and consumed by the viewer. We find
that the rendering step takes negligible time. The decoding
time for a 1-second tile ranges from 0.2 to 0.5 seconds (on
SGS8). We model the decoding time of a tile as f

F D. F=30 is
the number of frames per tile; f ∈ (0, F] is the first frame in
the tile that will appear in the predicted viewport trajectory
or any of its OOS tiles; D is the per-tile decoding time (i.e.,
decoding all F frames in a tile), measured by the player and
averaged over the past 20 samples.

We next estimate the waiting time. First consider the sce-
nario where a single tile is waiting in the Encoded Tile Buffer.
It cannot be decoded until any of the decoders becomes idle.
This waiting time can be calculated asw = min{w1, ...,wp }
where p is the number of decoders, and each decoder i will
finish decoding its current tile inwi seconds (a random vari-
able). Now consider a general scenario where q tiles are
waiting to be decoded. In the worst case, q is the number of
tiles to appear in the next frame’s viewport, and we consider
the (longest) waiting time for the last of the q tiles to be
decoded. This worst-case waiting time is thus qw , whose
expectation can be calculated as qD

p+1 by assuming each wi

independently follows a uniform distribution on [0,D]. In
our system, we use a less conservative waiting time of qw/2.
ThenT decoding

i in Eq. 8 is estimated as the sum of the expected
waiting time and decoding time:

T
decoding
i = D

[
f

F
+

q

2(p + 1)

]
(9)

In Eq. 9, F and p are constants; q can also be approximated as
a constant (e.g., we use 6 for 4×6 segmentation); f is derived
by the tile scheduler;D can be estimated from measurements
at runtime as described before.

8 IMPLEMENTATION
We have fully implemented Flare on commodity Android
smartphones and Linux OS. The player is written in Java us-
ing Android SDK (for decoding, rendering, projection, track-
ing head movement, and UI) and C++ using Android NDK
(for networking, tile scheduling, rate adaptation, VP, and the
Encoded Tile Buffer). Tile decoding is realized through the
low-level Android MediaCodec API [3]. We use OpenGL ES
for GPU-assisted viewport rendering. The DFB is realized
through OpenGL ES textures stored in video memory. We
have successfully tested Flare on three devices: SGS7, SGS8,
and Samsung Galaxy J7 (SGJ7), all running stock Android
7.0 OS. The phones do not need to be rooted. The server is
implemented in C/C++ on standard Linux platform (Ubuntu
14.04 and 16.04). Our implementation consists of 14,200 lines
of code (LoC) whose breakdown is as follows: for the client-
side player, 4,800 LoC in Java and 5,700 LoC in C++; for the
server, 2,900 LoC in C++ (user space server logic) and 800
LoC in C (a kernel module to be described below).

Server
App

TCP Send Buffer

Network

Packets of Tile Data

User/Kernel Boundary

Server
App

Network

Empty Packets
Tile Data
Injector

(a)

(b)

Figure 8: Two server-side transmission schemes. Flare uses (b).

Impact of Server-Side Sender TCP Buffer. The client-
server communication channel (§7.1) is realized using a per-
sistent TCP connection. Interestingly, we find that on the
server side, its TCP send buffer (sendbuf) may severely im-
pact the performance of Flare. Onwireless networks, the TCP
sendbuf may inflate quite a bit due to bufferbloat [30, 35].
Figure 8(a) plots the scheme where Flare runs on unmodi-
fied Linux TCP/IP stack. As shown, the TCP sendbuf is filled
with data packets containing tile contents. At this moment,
assume the server receives a new request containing an up-
to-date tile list. If the tiles that are queued in sendbuf do not
appear in the new request, then they should be removed
from the sendbuf. However, such a removal operation is not
supported by TCP, whose sendbuf is inherently FIFO. As a
result, the unneeded tiles in sendbuf cause head-of-line (HoL)
blocking and bandwidth waste [45].
Ideally, the above problem should be fixed by using a

custom transport protocol. However, given TCP’s absolute
dominance in today’s transport protocols, we design and
implement a solution that eliminates the HoL blocking while
working with off-the-shelf TCP. As shown in Figure 8(b), in
our solution, the server application generates empty packets
as “placeholders”, and controls a kernel module that injects
the actual data only when packets are leaving sendbuf. In
this way, the aforementioned HoL is eliminated because
inside sendbuf there are only placeholders and the actual
data injection is postponed to the latest possible stage. The
kernel module was implemented using the Linux Packet
Filtering framework [6]. It properly determines the number
of empty packets (bytes) to generate, and also takes care
of TCP retransmission, packet reordering, and checksum
rewriting. In the above scheme, some bytes may be wasted
(i.e., not filled with the actual tile data). In practice, such
wasted bytes account for a negligible fraction (<0.5%) of all
transmitted bytes.

9 EVALUATION
We extensively evaluate the performance of Flare and com-
pare it with other algorithms. The basic approach is to replay
head movement traces from real users for these algorithms.

9.1 Experimental Setup
Video and User Selection. Our user study consists of a
large number of users (130) and videos (10). From them, we

pick “representative” ones in terms of their VP difficulties.
Specifically, we select 6 videos with different VP accuracies
including 2 “easy” videos: car racing (3’01”) and roller coaster
(1’57”), 2 “medium” videos: wild animal (2’49”) and skydive
(3’53”), and 2 “difficult” videos: concert (4’25”) and sea world
(2’14”). All videos are in 4K resolution, and are encoded
into 5 levels (0 to 4, with 0 being the lowest quality) using
different Constant Rate Factor (CRF) values from 23 to 42. The
encoded bitrate ratio between two consecutive quality levels
is roughly 1:1.5, following prior recommendations [8, 12].
Regarding the users, we uniformly sample 11 users based
on their average VP accuracy across all videos. The sampled
users’ VP accuracy ranges from 63% to 89% (using 1-second
prediction window, linear regression).

Network Conditions. For WiFi experiments, our client
device (SGS 8) and server (3.6GHz Quad-core CPU, 16GB
memory) are connected to a commodity 802.11 AP at 2.4GHz.
The end-to-end peak throughput is ∼90Mbps and ping la-
tency is ∼1ms. We then use the Linux tc tool to emulate chal-
lenging network conditions as follows. We replay 10 band-
width traces collected from real 4G/LTE networks. Within
the 10 traces, 5 are obtained from a public 4G/LTE trace cap-
tured during mobility [15]; the other 5 traces are captured
by ourselves at various public locations including restau-
rant, hotel, coffee shop, airport, and shopping mall. Since
the bandwidth in some traces is quite high, we linearly scale
each trace to make the average bandwidth around 9.6Mbps
(standard deviation 4.5Mbps across all 1-second slots). tc also
inflates the end-to-end latency to 50ms. Similar replay-based
network emulation approaches are used in numerous prior
studies [31, 44, 59]. For LTE experiments, we directly run
Flare on commercial LTE networks at 9 locations in 6 U.S.
states with diverse LTE signal strength to be detailed in §9.3.

Algorithms to Compare.We implement the following
five algorithms: (1) our Flare algorithm with 4×6, 4×4, and
2×4 tile segmentations, (2) Festive [36], a throughput-based
rate adaptation algorithm, (3) BBA [34], a buffer-based rate
adaptation algorithm, (4) Full [29], an algorithm that fetches
tiles in the viewport with the highest possible quality and all
other tiles with the lowest possible quality, and (5) H2 [47],
an extension of Full that uses the residual network capac-
ity to increase the quality of tiles adjacent to viewport tiles.
Within the above, (1), (4), and (5) are viewport-adaptive 360°
streaming algorithms; (2) and (3) are algorithms for con-
ventional DASH videos. Note that all viewport-adaptive
schemes (Flare, H2, and Full) use the same buffer size (3 sec-
onds’ worth of tiles). Both non-viewport-adaptive schemes
(Festive and BBA) employ a longer buffer size of 40 seconds.
Their non-viewport-adaptive nature allows the buffer size
to be longer. We use the four evaluation metrics defined
in §5, plus the total downloaded bytes to assess the above

F
24

F
16

F
8

E
1

B
1

H
24

H
16

H
8

U
24

U
16

U
8

0

1

2

3

4

Le
ve

l

(a)

St
al

l i
n

Un
it

Ti
m

e
(s

/m
in

)

30
35
40

F
24

F
16

F
8

E
1

B
1

H
24

H
16

H
8

U
24

U
16

U
8

0
5

10
15
20

(b)

F
24

F
16

F
8

E
1

B
1

H
24

H
16

H
8

U
24

U
16

U
8

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Us
er

 P
er

ce
iv

ed
 R

at
io

(c)
F

24
F

16
F
8

E
1

B
1

H
24

H
16

H
8

U
24

U
16

U
8

0

0.5

1

1.5

2

Le
ve

l C
ha

ng
e

(d)

Figure 9: Comparing 5 schemes overWiFi with limited bandwidth. Schemes: F=Flare, E=Festive, B=BBA, H=H2, U=Full. Segmentation: 24=4×6
tiles, 16=4×4, 8=2×4, 1=1×1 tile.Metrics: (a) perceived quality level, (b) stall per minute, (c) user perceived ratio, (d) quality level changes.

algorithms. The quality switch is computed as the sum of
Eq. 5 and Eq. 6.

Parameter Selection. For Flare, we empirically deter-
mine the following parameters: 4 parallel H.264 decoders,
ξ=1 (Eq. 1), α=0.5 (Eq. 2),wi=1 (Eq. 7), ZU B=0.9, ZLB=0.3 (§5),
Fx=100°, Fy=90°, and four classes constructed as shown in
Figure 7.We study their impacts in §9.9. For other algorithms,
we use the recommended parameters in their original papers.

9.2 WiFi Results
Perceived Quality Level. Figure 9(a) plots for each stream-
ing scheme the average quality level of consumed tiles (Eq. 4)
across all playbacks. Recall in §9.1 that each bar consists of
660 video playbacks (6 videos × 11 users × 10 bandwidth
traces, about 34 hours’ playback). Flare’s 4×6, 4×4, and 2×4
tile schemes yield median quality levels of 2.95, 2.83, and
2.46, respectively. Festive and BBA only achieve 0.164 and
1.29, respectively, due to their viewport-agnostic approaches.
Overall, Flare’s median quality level improvement ranges
from 1.90× to 18.0×. H2 and Full are also viewport-adaptive,
but they yield slightly lower quality level compared to Flare,
because they download all tiles (more than necessary).

Stall. Figure 9(b) shows distributions of stall duration,
measured in seconds per playbackminute, across all playbacks.
Festive and BBA yield the lowest stall, while Flare’s stall is a
bit longer: for 4×6, 4×4, and 2×4, the median stall across 660
playbacks are 0.96, 0.80, and 0.55 s/min, respectively. This
is again due to the viewport-adaptive paradigm employed
by Flare: fetching a subset of tiles naturally increases the
probability of stalls. However, due to Flare’s various design
decisions at both algorithm and system levels, we manage
to reduce the stall to a very low level (median value less
than 1s/min). Meanwhile, we do observe that in some cases
BBA incurs high stall due to scarce bandwidth and BBA’s
aggressive quality selection strategy (compared to Festive).
Also, as expected, a large tile size for Flare can better tolerate
inaccurate viewport prediction and thus reduce the stall (§4).

It is worth mentioning that the stall of Flare can be further
reduced. For example, an effective approach would be to al-
ways download a 1×1 chunk containing the entire panoramic
view at the lowest resolution or quality level to guarantee

F
24

F
16

F
8

E
1

B
1

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
By

te
s

(a)
F

24
F

16
F
8

E
1

B
1

3.0

3.2

3.4

3.6

3.8

4.0

Le
ve

l

(b)

Figure 10: Comparing 3 schemes over WiFi w/o bandwidth throt-
tling: (a) normalized downloaded bytes, (b) perceived quality level.

there is always some content to play even when the VP is
inaccurate. This approach can be easily integrated into Flare.
Figure 9(b) also illustrates that both H2 and Full suffer

from unacceptably high stall duration. This is because (our
best-effort implementations of) H2 and Full do not have
Flare’s salient features such as multi-timestamp VP (§4), fast-
paced tile scheduling (§4), and decoding schedulers (§7.2). As
a result, despite their utilization of the tile-based streaming
concept and VP, their overall system performance is poor.

User Perceived Ratio. Figure 9(c) shows the ratio be-
tween the consumed and the overall video bitrate, across
all playbacks. The results cross-validate those in Figure 9(a):
the user perceived ratios for Flare significantly outperform
those of Festive and BBA.

Quality Level Changes. Figure 9(d) plots the quality
level changes (the sum of Eq. 5 and Eq. 6) across all playbacks.
As shown, Flare has higher quality level changes compared
to other schemes. However, based on our viewing experi-
ences, its incurred QoE degradation is very limited because
most quality level changes (both inter- and intra-chunk) oc-
cur at the periphery of the viewport (recall in §5 that Flare
enforces that all Class-0 tiles have the same quality level);
also the changes are oftentimes barely noticeable due to the
tiles’ small overlap with the viewport. Moreover, the quality
changes can further be reduced by tuningwi in Eq. 7, as to
be shown in §9.9. Note that a recent study [54] investigates
the perceptual effect on viewers when adjacent tiles have
different video encoding quality levels via a psychophysical
study with 50 participants. They found that mixed-resolution
tiles are acceptable for most users for videos with low and
medium motion.

F
24

F
16

H
24

H
16

B
1

0

1

2

3

4

Le
ve

l

(a)
F

24
F

16
H
24

H
16

B
1

0
10
20
30
40
50
60

St
al

l i
n

Un
it

Ti
m

e
(s

/m
in

)

(b)

F
24

F
16

H
24

H
16

B
1

0.4
0.5
0.6
0.7
0.8
0.9
1.0

No
rm

al
ize

d
By

te
s

(c)

F 4×4 H 4×6 H 4×4 B 1×1

Office
Level 1.01 0.96 0.95 0.83
Stall 0.79 89.7 9.62 0.03
DL 1.12 1.14 1.20 1.38

Hotel
Level 0.86 0.60 0.60 0.17
Stall 1.16 5.34 2.34 1.29
DL 1.01 1.15 1.16 1.08

Conf Level 1.02 0.88 0.93 0.54
Center Stall 1.03 30.2 11.5 1.74

DL 1.13 1.11 1.24 1.03

Figure 11: Comparing 3 streaming schemes over commercial LTE networks:
(a) perceived quality level, (b) stall, and (c) normalized downloaded bytes.

Table 2: LTE results at 3 locations. Comparing 5
schemes on 3 metrics. Flare 4×6 is the baseline (1.00).

Bandwidth Savings. We now quantify the bandwidth
reduction brought by Flare. We repeat the experiments in
Figure 9 under an ideal network condition where the tc band-
width throttling is removed. The two subplots in Figure 10
show the distributions of per-video download sizes (normal-
ized for each video) and perceived quality levels. Each bar
consists of 66 playbacks (6 videos × 11 users, about 3.4 hours’
playback). As shown in Figure 10(a), compared to Festive and
BBA, Flare reduces the bandwidth consumption (the median
across all 66 runs) by up to 31.1%, depending on the segmen-
tation configuration. Note that the bandwidth savings are
conservative estimations because, as shown in Figure 10(b),
even when the bandwidth is high, Festive and BBA’s quality
level selections are lower than Flare.

9.3 Commercial LTE Results
We conduct extensive experiments on commercial LTE net-
works of a large U.S. cellular carrier. We select 9 locations in
6 states. They include hotels, apartments, residential houses,
conference centers, and office buildings. In each location, we
replay 4 diverse users’ head movement traces for 3 videos
(one “easy” video: roller coaster; one “medium”: skydive; and
one “difficult”: sea world), using five schemes (Flare with
4×6 and 4×4, H2 with 4×6 and 4×4, BBA). The experiments
were repeated multiple times at different time of day. They
span ∼100 hours, consuming over 600 GB cellular data.

The three subplots in Figure 11 show the distributions of
average bitrate level, stall, and downloaded bytes (normalized
for each video) across all locations, users, and videos. Overall,
as shown in Figure 11(a), compared to BBA, Flare increases
the average bitrate level by 22.7% and 22.3% for 4×4 and 4×6
tiles, respectively. The improvement is smaller than those in
Figure 9 because of the high LTE bandwidth in many (6 out of
9) places. Nevertheless, as shown in Figure 11(c), with such
quality improvement, Flare also reduces the downloaded
bytes by 26.4% and 34.6% for 4×4 and 4×6 tiles, compared to
BBA. Another encouraging result is reported in Figure 11(b):
Flare achieves qualitatively similar stall compared to BBA in
particular when the bandwidth is constrained. The results of
H2 are largely inlinedwith theWiFi results (§9.2) as exhibited
by high stall duration.

Table 2 presents case studies for three locations. All num-
bers are normalized using Flare 4×6 as the baseline (1.00).
For office, the network connectivity is good so Flare can help
reduce the bandwidth consumption by 28% while increasing
the quality level by 20%. For hotel where the LTE bandwidth
is lower, Flare effectively improves the consumed quality
level by 4.9× and reduces the stall time by 22% compared
to BBA. The conference center has even worse network con-
ditions due to poor signal strengths (around -116dBm) and
dense users. In this scenario, BBA cannot even support the
lowest quality (level 0), while the average quality for Flare
almost doubles with 43% reduction of the stall time.
9.4 Decoder Parallelism
Figure 12 studies the impact of the number of decoders. Each
bar consists of 22 playbacks (2 videos: roller coaster and
wild animal; all 11 users selected in §9.2) for 4×6 tiles on
SGS8. The number of hardware decoders has a big impact
on the stall time. On one hand, we indeed need to leverage
parallel decoders on commodity smartphones, as indicated
by the high stall time of using only one decoder. On the other
hand, using too many decoders also negatively affects the
performance: the complex video decoding pipeline involves
multiple hardware subsystems on a smartphone SoC (system-
on-a-chip) such as CPU, GPU, and DSP [17]; any of them
may potentially become the resource bottleneck when an
excessive number of decoding threads are running. We select
4 decoders for SGS8 based on Figure 12. This process can be
automated through one-time benchmarking on a new device.

9.5 Server-Side Tile Transmission Scheme
Recall in §8 that Flare introduces an OS kernel mechanism
that “bypasses” TCP sendbuf. How important is this feature?
In Figure 13, we consider three server-side tile transmission
schemes. “Usr+Knl Update” is Flare’s mechanism as illus-
trated in Figure 8(b). “User Update” is the transmission mode
without the kernel mechanism as depicted in Figure 8(a);
in this mode, an out-of-date tile can only be removed from
server’s app-layer transmission buffer in the user space. “No
Update” is a simple scheme where once a tile is pumped
into the app-layer buffer, it is never removed. Each bar in
Figure 13 consists of 60 playbacks (2 videos × 3 users × all

1 2 4 6 8 10
Number of Decoders

0

5

10

15

20

St
al

l i
n

Un
it

Ti
m

e
(s

/m
in

)

No
Update

User
Update

Usr+Knl
Update

0
1
2
3
4
5
6

St
al

l i
n

Un
it

Ti
m

e
(s

/m
in

)
.9 1 .1 .2 .3 .4

wi

0

0.5

1.0

1.5

2.0

Le
ve

l C
ha

ng
e

.9 1 .1 .2 .3 .4
wi

0

1.0

2.0

3.0

4.0

Le
ve

l

(a) (b)
0 .2 .4 .6 .8 1 1.20.57

0.58

0.59

0.60

0.61

0.62

No
rm

al
ize

d
By

te
s

0 .2 .4 .6 .8 1 1.20.0

0.1

0.2

0.3

0.4

0.5

St
al

l i
n

Un
it

Ti
m

e
(s

/m
in

)

(a) (b)

Figure 12: Impact of
of parallel decoders.

Figure 13: Server
transmission schemes.

Figure 14: Impact of wi on (a) level
change and (b) level quality (simulation).

Figure 15: Impact of ξ on (a) downloaded
bytes and (b) stall time (simulation).

10 bandwidth traces selected in §9.2). As shown, updating
tile content in the buffer leads to significant reduction of
the stall time, due to the elimination of head-of-line block-
ing incurred by out-of-date tiles. Also, such update needs
to be performed in both the user and kernel buffers: our
designed kernel mechanism effectively reduces the median
stall duration by 39% compared to the “User Update” scheme.

9.6 Video Memory Consumed by DFB
Flare needs video memory to store decoded frames in the
Decoded Frame Buffer (DFB, §6). Our implementation man-
ages the DFB as follows. The DFB maintains k slots each
can store a decoded frame. The slots are allocated in a “lazy”
manner. At the beginning of a video playback, k is initially
set to 10. When any decoder produces a frame of a tile, the
frame is saved into an empty slot. If there is no empty slot,
k is increased by 10 (i.e., additional 10 slots are allocated).
When a frame is consumed or discarded, its slot is marked as
empty so the storage can be reused, but k is not decreased.

To quantify the video memory overhead of DFB, we record
k after each of the 660 playbacks in §9.2. The recorded value
thus corresponds to the maximum number of allocated slots.
We can then compute the maximum video memory usage
of this playback, denoted as Vmax, as the product of k , the
tile’s width × height, and the color-depth of each pixel. For
4×6 segmentation, the 25th, 50th, 75th, and 90th percentile
of Vmax are 596MB, 636MB, 721MB, and 852MB, respectively.
Overall, the video memory usage is indeed non-trivial, but
it well fits the available video memory, which is typically
shared with the main memory, of today’s COTS smartphones.

9.7 Energy and Thermal Overhead
We conduct the following experiments to measure the en-
ergy consumption of Flare (4×6 tiles) and compare it with
BBA.We fully charge an SGS8 phone and play a video (Roller
Coaster in 4K) continuously for 30 minutes, and then read
the battery percentage level. Over LTE networks with good
signal strength, after 30-minute continuous playback, the
battery level drops to 86% and 92% for Flare and BBA, re-
spectively. Flare consumes more energy largely because of
its higher CPU usage (average utilization of 58% compared
to 18% for BBA). The GPU usage is similar for Flare and BBA

(11% vs. 8%). Over WiFi, the battery level drops to 88% and
94% for Flare and BBA after 30-minute playback. Regarding
the thermal overhead, Flare yields slightly higher CPU tem-
perature compared to BBA (48°C vs. 44°C over LTE and 46°C
vs. 40°C over WiFi). Overall, we believe the above overhead
is non-trivial but acceptable. They can potentially be reduced
by better system-level engineering or edge-cloud offloading.

9.8 Other Results from the Real System
Other Devices. So far all our experiments run on SGS8. We
also test Flare on two older devices: Samsung Galaxy S7
(SGS7) and Samsung Galaxy J7 (SGJ7). SGS7 offers compa-
rable performance to SGS8. Unlike SGS8/SGS7, SGJ7 is a
medium-end smartphone released almost 3 years ago. On
SGJ7, we do observe higher stall time (up to 1.7× higher than
SGS8 under the same network condition and user head move-
ment trajectory) due to the longer decoding time and less
frequent invocations of tile scheduling and rate adaptation,
caused by its limited computation power. We believe Flare
will offer better performance on future mobile devices.

8K Videos. Flare is a general framework that can stream
videos in any resolution and encoding scheme. To test its per-
formance on 8K videos, we use the 360° Angel Falls video [14]
that has been viewed 2.3M times on YouTube as in March
2018. The video’s original resolutions are 7680×3840 and
3840×2160 for 8K and 4K respectively. We segment them
into 4×6 tiles at a high quality (CRF=23). Both 4K and 8K can
be played on SGS8 (we test them over 50Mbps WiFi and a
user’s head movement trajectory with the VP accuracy being
around 80%). For 4K, the stall is around 0.2s/min, while for
8K, the stall is higher at around 2.2s/min due to the high
decoding overhead. This is confirmed by comparing the de-
coding penalty averaged over T decoding

i defined in Eq. 9: the
penalties for 4K and 8K playback are 1:2.34. Note that Flare’s
current implementation uses H.264 encoding; it may achieve
better performance through newer encoding schemes such as
H.265/HEVC with better support for parallel decoding [46].

9.9 Trace-driven Simulations
To further scale up our evaluations, we also develop a simula-
tor for Flare and other streaming algorithms. The simulator
takes as input real bandwidth traces (we select 20 traces

using the same method described in §9.1) and users’ head
movement traces (we use all 130 users in our user study),
and computes the key performance metrics defined in §5 for
all 10 videos. We repeat the experiments in Figure 9 and 10
on our simulator and observe qualitatively similar results.

Parameter Selection. Leveraging our simulator, we sys-
tematically explore the impact of various parameters listed
in §9.1. Here we exemplify two key parameters:wi (control-
ling the importance of quality change in Eq. 7) and ξ (con-
trolling the aggressiveness of fetching OOS tiles in Eq. 1).
As shown in Figure 14(a), as we increasewi , the tiles’ qual-
ity levels become homogeneous; meanwhile, as shown in
Figure 14(b), the overall playback quality decreases. This is
because it is difficult to increase the playback quality for an
individual tile as doing so would require increasing other
tiles’ qualities as well. Figure 15 studies the impact of ξ . As
shown, increasing ξ causes slight inflation of bandwidth con-
sumption due to the additionally downloaded OOS tiles; on
the positive side, doing so helps reduce the stall duration.

10 RELATEDWORK
There are several proposals of viewport-adaptive stream-
ing for 360° videos. Bao et al. [23] propose a partial con-
tent transmission scheme using head movement prediction;
Qian et al. [48] propose to explicitly use a tile-based ap-
proach; 360ProbeDASH [57] is another QoE-driven optimiza-
tion framework for tile-based streaming. There are other
recent proposals such as [28, 29, 33, 42, 47, 61]. There are
also proposals on various projection and content representa-
tion schemes for 360° videos. For example, POI360 [58] is an
interactive live 360° video streaming system that dynamically
adjusts the compression strategy to maintain good perceived
quality. Li et al. [40] propose a tile-based encoding solution
for omnidirectional videos by creating approximately equal-
area titles after projection. Other studies along this direction
include [26, 54, 60], to name a few. Compared to the above
studies, Flare consists of a holistic framework for the end-to-
end 360° video streaming pipeline. It introduces new stream-
ing algorithms, and brings many system and network-level
optimizations that have not been investigated previously.

Recently, He et al. developed Rubiks, another practical 360°
video streaming system for smartphones [32]. It also employs
the tile-based streaming paradigm and viewport prediction.
Flare differs from Rubiks in several aspects, to list a few be-
low. First, Rubiks requires special encoding that temporally
splits a tile, while Flare can work with traditional encoding
schemes such as unmodified H.264 and H.265, which pro-
duce encoded tiles with smaller sizes compared to tiles in
Rubiks. Second, unlike Rubiks that conducts single-point VP,
Flare predicts the viewport trajectory, and allows a previ-
ously inaccurate prediction to be updated by a more recent
prediction. Third, Flare’s realization of the rate adaptation

is different from Rubiks, offering additional features such as
multi-class tiles and buffer-aware rate adaptation. Another
recent tile-based 360° video streaming system is BAS-360 [56].
Compared to Flare, BAS-360 misses several key components
such as VP and efficient decoding. In addition, neither work
was evaluated over real cellular networks as we did for Flare.

360° videos play an important role in the VR ecosystem.
Tremendous efforts have been made towards mobile VR.
Recently developed VR systems include FlashBack [24],
MoVR [20], Furion [39], and LTE-VR [53], to name a few.
They are orthogonal to and can benefit from Flare. For
example, our VP algorithm can improve the prefetching
performance for both FlashBack and Furion.

11 LIMITATIONS AND CONCLUSION
Flare is just our first step towards intelligent 360° video
streaming. In its current design, the system still has a few
limitations that we plan to address in our future work.
A key challenge of viewport-adaptive streaming is VP.

Despite a series of optimizations, Flare may still suffer from
higher stalls than non-viewport-adaptive approaches due to
imperfect VP. There are several future research directions: (1)
using cloud/edge to support more advanced VP algorithms,
(2) exploring crowd-sourced head movement data [42] and
video content [27] for long-term VP, and (3) using other
sensors such as gaze-tracking [38, 41] to improve VP.
Another concern of tile-based streaming is its incurred

higher quality changes. Our rate adaptation algorithm has
built-in features for mitigating them and offering knobs to
tune them (Figure 14). However, the impact of such quality
changes on QoE and QoE metrics for 360° videos in general
are still under-explored, compared to the well-studied QoE
metrics for regular videos [22].
Fetching the entire panoramic content has other advan-

tages such as being able to quickly rewind and look at the
scene from another view. Realizing these features using
viewport-adaptive approaches involves extra complexities.

To conclude, Flare demonstrates that it is feasible to re-
alize the tile-based concept for streaming 4K and even 8K
360° videos on commodity mobile devices without additional
infrastructures or special video encoding support. We intend
to make our head movement dataset publicly available to
facilitate intra-disciplinary research in this space.

ACKNOWLEDGEMENTS
We would like to thank the voluntary users who partici-
pated in our user study, and Justus Schriedel for managing
the study. We also thank the MobiCom reviewers and the
shepherd for their valuable comments. Feng Qian’s research
was supported in part by NSF Award #1566331, #1629347, an
AT&T VURI Award, and a Google Faculty Award.

REFERENCES
[1] 360 Google Spotlight Story: Help . https://www.youtube.com/watch?

v=G-XZhKqQAHU.
[2] 360° Great Hammerhead Shark Encounter . https://www.youtube.com/

watch?v=rG4jSz_2HDY.
[3] Android MediaCodec API . https://developer.android.com/reference/

android/media/MediaCodec.html.
[4] Elephants on the Brink . https://www.youtube.com/watch?v=

2bpICIClAIg.
[5] GT-R Drives First EVER 360 VR lap . https://www.youtube.com/watch?

v=LD4XfM2TZ2k.
[6] Linux Packet Filtering framework . https://www.netfilter.org/

documentation/HOWTO/packet-filtering-HOWTO.html.
[7] Mega Coaster: Get Ready for the Drop . https://www.youtube.com/

watch?v=-xNN-bJQ4vI.
[8] Per-Title Encode Optimization . https://medium.com/netflix-techblog/

per-title-encode-optimization-7e99442b62a2.
[9] Pony Stable Playhouse for the Currys . https://www.youtube.com/

watch?v=MWg1kjMmr3k.
[10] Under the hood: Building 360 video . https://code.facebook.com/posts/

1638767863078802.
[11] Visit Hamilton Island in 360° Virtual Reality with Qantas . https:

//www.youtube.com/watch?v=lJype_TafRk.
[12] What Is Per-Title Encoding? . https://bitmovin.com/

per-title-encoding/.
[13] YouTube live in 360 degrees encoder settings . https://support.google.

com/youtube/answer/6396222.
[14] 360° , Angel Falls, Venezuela . https://www.youtube.com/watch?v=L_

tqK4eqelA.
[15] 4G/LTE Bandwidth Logs. http://users.ugent.be/~jvdrhoof/dataset-4g/.
[16] Feel wimbledon with andy murray. https://www.youtube.com/watch?

v=Krl6U15OERo.
[17] Qualcomm Snapdragon 835. https://www.qualcomm.com/products/

snapdragon/processors/835.
[18] Skydive in 360° virtual reality via gopro. https://www.youtube.com/

watch?v=S5XXsRuMPIU.
[19] Tomorrowland 2014 | 360 degrees of madness. https://www.youtube.

com/watch?v=j81DDY4nvos.
[20] O. Abari, D. Bharadia, A. Duffield, and D. Katabi. Enabling High-

Quality Untethered Virtual Reality. In Proceedings of NSDI 2017, pages
531–544. USENIX Association, 2017.

[21] S. Afzal, J. Chen, and K. Ramakrishnan. Characterization of 360-Degree
Videos. In Proceedings of the Workshop on Virtual Reality and Aug-
mented Reality Network, pages 1–6. ACM, 2017.

[22] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang.
Developing a Predictive Model of Quality of Experience for Internet
Video. In Proceedings of SIGCOMM 2013, pages 339–350. ACM, 2013.

[23] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. Shooting a Moving
Target: Motion-Prediction-Based Transmission for 360-Degree Videos.
In Proceedings of Big Data 2016, pages 1161–1170. IEEE, 2016.

[24] K. Boos, D. Chu, and E. Cuervo. FlashBack: Immersive Virtual Reality
on Mobile Devices via Rendering Memoization. In Proceedings of
MobiSys 2016, pages 291–304. ACM, 2016.

[25] X. Corbillon, F. De Simone, and G. Simon. 360-Degree Video Head
Movement Dataset. In Proceedings of MMSys 2017. ACM, 2017.

[26] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. Viewport-
Adaptive Navigable 360-Degree Video Delivery. In Proceedings of
ICC 2017. IEEE, 2017.

[27] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu.
Fixation Prediction for 360 Video Streaming in Head-Mounted Virtual
Reality. In Proceedings of the Workshop on Network and Operating

Systems Support for Digital Audio and Video, pages 67–72. ACM, 2017.
[28] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen. Tiling

in Interactive Panoramic Video: Approaches and Evaluation. IEEE
Transactions on Multimedia, 18(9):1819–1831, 2016.

[29] M. Graf, C. Timmerer, and C. Mueller. Towards bandwidth efficient
adaptive streaming of omnidirectional video over HTTP: Design, im-
plementation, and evaluation. In Proceedings of MMSys 2017, pages
261–271. ACM, 2017.

[30] Y. Guo, F. Qian, Q. A. Chen, Z. M. Mao, and S. Sen. Understanding
on-device bufferbloat for cellular upload. In Proceedings of IMC 2016 ,
pages 303–317. ACM, 2016.

[31] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. MP-DASH: Adaptive
Video Streaming Over Preference-Aware Multipath. In Proceedings of
CoNEXT 2016, pages 129–143. ACM, 2016.

[32] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical
360-Degree Streaming for Smartphones. In Proceedings of MobiSys
2018. ACM, 2018.

[33] M. Hosseini and V. Swaminathan. Adaptive 360 VR video streaming:
Divide and conquer. In Multimedia (ISM), 2016 IEEE International
Symposium on, pages 107–110. IEEE, 2016.

[34] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
Buffer-Based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service. In Proceedings of SIGCOMM 2014, pages
187–198. ACM, 2014.

[35] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G
networks . In Proceedings of IMC 2012, pages 329–342. ACM, 2012.

[36] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and
Stability in HTTP-Based Adaptive Video Streaming With Festive. In
Proceedings of CoNEXT 2012, pages 97–108. ACM, 2012.

[37] N. Jiang, V. Swaminathan, and S. Wei. Power Evaluation of 360 VR
Video Streaming on Head Mounted Display Devices. In Proceedings
of the 27th Workshop on Network and Operating Systems Support for
Digital Audio and Video, pages 55–60. ACM, 2017.

[38] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das. Improving User
Perceived Page Load Times Using Gaze . In Proceedings of NSDI 2017,
pages 545–559. USENIX Association, 2017.

[39] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices. In
Proceedings of MobiCom 2017, pages 409–421. ACM, 2017.

[40] J. Li, Z. Wen, S. Li, Y. Zhao, B. Guo, and J. Wen. Novel tile segmentation
scheme for omnidirectional video. In Proceedings of ICIP 2016, pages
370–374. IEEE, 2016.

[41] T. Li, Q. Liu, and X. Zhou. Ultra-Low Power Gaze Tracking for Virtual
Reality . In Proceedings of SenSys 2017. ACM, 2017.

[42] X. Liu, Q. Xiao, V. Gopalakrishnan, B. Han, F. Qian, and M. Varvello.
360 Innovations for Panoramic Video Streaming . In Proceedings of
HotNets 2017. ACM, 2017.

[43] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu. 360
Video Viewing Dataset in Head-Mounted Virtual Reality. In Proceed-
ings of MMSys 2017, pages 211–216. ACM, 2017.

[44] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Stream-
ing with Pensieve . In Proceedings of SIGCOMM 2017, pages 197–210.
ACM, 2017.

[45] X. Mi, F. Qian, and X. Wang. SMig: Stream Migration Extension For
HTTP/2. In Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies, pages 121–128.
ACM, 2016.

[46] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou. An
overview of tiles in HEVC. IEEE Journal of selected topics in signal
processing, 7(6):969–977, 2013.

[47] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck. An
HTTP/2-based adaptive streaming framework for 360° virtual reality

 https://www.youtube.com/watch?v=G-XZhKqQAHU
 https://www.youtube.com/watch?v=G-XZhKqQAHU
 https://www.youtube.com/watch?v=rG4jSz_2HDY
 https://www.youtube.com/watch?v=rG4jSz_2HDY
 https://developer.android.com/reference/android/media/MediaCodec.html
 https://developer.android.com/reference/android/media/MediaCodec.html
 https://www.youtube.com/watch?v=2bpICIClAIg
 https://www.youtube.com/watch?v=2bpICIClAIg
 https://www.youtube.com/watch?v=LD4XfM2TZ2k
 https://www.youtube.com/watch?v=LD4XfM2TZ2k
 https://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
 https://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
 https://www.youtube.com/watch?v=-xNN-bJQ4vI
 https://www.youtube.com/watch?v=-xNN-bJQ4vI
 https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
 https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
 https://www.youtube.com/watch?v=MWg1kjMmr3k
 https://www.youtube.com/watch?v=MWg1kjMmr3k
 https://code.facebook.com/posts/1638767863078802
 https://code.facebook.com/posts/1638767863078802
 https://www.youtube.com/watch?v=lJype_TafRk
 https://www.youtube.com/watch?v=lJype_TafRk
 https://bitmovin.com/per-title-encoding/
 https://bitmovin.com/per-title-encoding/
 https://support.google.com/youtube/answer/6396222
 https://support.google.com/youtube/answer/6396222
 https://www.youtube.com/watch?v=L_tqK4eqelA
 https://www.youtube.com/watch?v=L_tqK4eqelA
 http://users.ugent.be/~jvdrhoof/dataset-4g/
 https://www.youtube.com/watch?v=Krl6U15OERo
 https://www.youtube.com/watch?v=Krl6U15OERo
 https://www.qualcomm.com/products/snapdragon/processors/835
 https://www.qualcomm.com/products/snapdragon/processors/835
 https://www.youtube.com/watch?v=S5XXsRuMPIU
 https://www.youtube.com/watch?v=S5XXsRuMPIU
 https://www.youtube.com/watch?v=j81DDY4nvos
 https://www.youtube.com/watch?v=j81DDY4nvos

videos. In Proceedings of MM 2017, pages 1–9. ACM, 2017.
[48] F. Qian, B. Han, L. Ji, and V. Gopalakrishnan. Optimizing 360 video

delivery over cellular networks. In Proceedings of the Workshop on All
Things Cellular: Operations, Applications and Challenges, pages 1–6.
ACM, 2016.

[49] R. Real and J. M. Vargas. The probabilistic basis of Jaccard’s index of
similarity. Systematic biology, 45(3):380–385, 1996.

[50] C. Saunders, A. Gammerman, and V. Vovk. Ridge Regression Learning
Algorithm in Dual Variables . In Proceedings of ICML 1998, pages
515–521, 1998.

[51] A. J. Smola and B. Schölkopf. A tutorial on support vector regression.
Statistics and computing, 14(3):199–222, 2004.

[52] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj.
Viewport-Adaptive Encoding and Streaming of 360-Degree Video for
Virtual Reality Applications. In Proceedings of ISM 2016, pages 583–586.
IEEE, 2016.

[53] Z. Tan, Y. Li, Q. Li, Z. Zhang, Z. Li, and S. Lu. Enabling Mobile VR in
LTE Networks: How Close Are We? In Proceedings of SIGMETRICS
2018. ACM, 2018.

[54] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan. Mixing tile resolu-
tions in tiled video: A perceptual quality assessment. In Proceedings
of the Workshop on Network and Operating System Support on Digital
Audio and Video, page 25. ACM, 2014.

[55] C. Wu, Z. Tan, Z. Wang, and S. Yang. A Dataset for Exploring User
Behaviors in VR Spherical Video Streaming. In Proceedings of MMSys

2017, pages 193–198. ACM, 2017.
[56] M. Xiao, C. Zhou, V. Swaminathan, Y. Liu, and S. Chen. BAS-360:

Exploring Spatial and Temporal Adaptability in 360-degree Videos
over HTTP/2. In INFOCOM 2018-IEEE Conference on Computer Com-
munications, IEEE. IEEE, 2018.

[57] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 360ProbDASH: Improv-
ing QoE of 360 Video Streaming Using Tile-based HTTP Adaptive
Streaming. In Proceedings of MM 2017, pages 315–323. ACM, 2017.

[58] X. Xie and X. Zhang. POI360: Panoramic Mobile Video Telephony
over LTE Cellular Networks. In Proceedings of CoNEXT 2017, pages
336–349. ACM, 2017.

[59] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Ap-
proach for Dynamic Adaptive Video Streaming over HTTP. In Pro-
ceedings of SIGCOMM 2015, pages 325–338. ACM, 2015.

[60] M. Yu, H. Lakshman, and B. Girod. A framework to evaluate omnidi-
rectional video coding schemes. In Proceedings of the Symposium on
Mixed and Augmented Reality (ISMAR) 2015, pages 31–36. IEEE, 2015.

[61] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. HEVC-
compliant tile-based streaming of panoramic video for virtual reality
applications. In Proceedings of MM 2016, pages 601–605. ACM, 2016.

[62] C. Zhou, Z. Li, and Y. Liu. A Measurement Study of Oculus 360 Degree
Video Streaming. In Proceedings of MMSys 2017. ACM, 2017.

	Abstract
	1 Introduction
	2 Motivation and Flare Overview
	3 Viewport Prediction
	3.1 User Study
	3.2 VP Method for Flare

	4 Tile Scheduler
	5 Rate Adaptation
	6 Tile Decoding and Rendering
	7 Other Design Aspects of Flare
	7.1 Client-Server Communication
	7.2 Decoding Scheduler and the Interplay between Decoding and Rate Adaptation

	8 Implementation
	9 Evaluation
	9.1 Experimental Setup
	9.2 WiFi Results
	9.3 Commercial LTE Results
	9.4 Decoder Parallelism
	9.5 Server-Side Tile Transmission Scheme
	9.6 Video Memory Consumed by DFB
	9.7 Energy and Thermal Overhead
	9.8 Other Results from the Real System
	9.9 Trace-driven Simulations

	10 Related Work
	11 Limitations and Conclusion
	References

