
EMP: Edge-assisted Multi-vehicle Perception

Xumiao Zhang†, Anlan Zhang‡, Jiachen Sun†, Xiao Zhu†
Y. Ethan Guo⋄, Feng Qian‡, Z. Morley Mao†

†University of Michigan, ‡University of Minnesota, ⋄Uber Technologies, Inc.

ABSTRACT
Connected and Autonomous Vehicles (CAVs) heavily rely on 3D
sensors such as LiDARs, radars, and stereo cameras. However, 3D
sensors from a single vehicle suffer from two fundamental limi-
tations: vulnerability to occlusion and loss of details on far-away
objects. To overcome both limitations, in this paper, we design,
implement, and evaluate EMP, a novel edge-assisted multi-vehicle
perception system for CAVs. In EMP, multiple nearby CAVs share
their raw sensor data with an edge server which then merges CAVs’
individual views to form a more complete view with a higher res-
olution. The merged view can drastically enhance the perception
quality of the participating CAVs. Our core methodological contri-
bution is to make the sensor data sharing scalable, adaptive, and
resource-efficient over oftentimes highly fluctuating wireless links
through a series of novel algorithms, which are then integrated
into a full-fledged cooperative sensing pipeline. Extensive evalu-
ations demonstrate that EMP can achieve real-time processing at
24 FPS and end-to-end latency of 93 ms on average. EMP reduces
the end-to-end latency by 49% to 65% compared to the traditional
vehicle-to-vehicle (V2V) sharing approach without edge support.
Our case studies show that cooperative sensing powered by EMP
can detect hazards such as blind spots faster by 0.5 to 1.1 seconds,
compared to a single vehicle’s perception.

CCS CONCEPTS
• Networks → Cyber-physical networks; Cloud computing;
• Applied computing→ Transportation.

KEYWORDS
Autonomous Cars, Edge Computing, Cooperative Sensing, LiDAR
ACM Reference Format:
Xumiao Zhang†, Anlan Zhang‡, Jiachen Sun†, Xiao Zhu†, Y. Ethan Guo⋄,
Feng Qian‡, Z. Morley Mao†. 2022. EMP: Edge-assisted Multi-vehicle Per-
ception. In The 27th Annual International Conference on Mobile Computing
and Networking (ACM MobiCom ’21), January 31-February 4, 2022, New Or-
leans, LA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3447993.3483242

1 INTRODUCTION
Connected and autonomous vehicles (CAVs) are expected to trans-
form the ground transportation systems by significantly improving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8342-4/22/01. . . $15.00
https://doi.org/10.1145/3447993.3483242

(b) Unprotected Left Turn(a) Blind Spots (c) Broken Down Vehicle

Figure 1: Use cases of multi-CAV sensor data sharing.

road safety [4] and traffic efficiency [6]. 3D sensors such as LiDAR,
radars, and stereo cameras are extremely important to CAVs as the
sensors are their “eyes” that continuously sense the surrounding
environment. However, these sensors suffer from two fundamen-
tal limitations. First, they are vulnerable to occlusion. Because of
the rectilinear propagation of light, these sensors cannot perceive
objects occluded by non-transparent objects. Second, similar to hu-
man eyes, the farther an object is, the fewer details the sensors can
capture. Take LiDAR as an example, it emits uniform laser pulses
and constructs the environment based on the pulses reflected from
objects. Therefore, the density of the pulses and henceforth the
perception resolution decrease with increasing distance.

To overcome the above limitations, nearby CAVs can share their
sensor data so that each vehicle can have a more complete view
with a higher resolution compared to the view constructed from its
own sensors. We consider three use cases of sensor sharing among
nearby vehicles, as shown in Figure 1.
• Scenario 1 (blind spots from blocking vehicles): A pedestrian and
a cyclist are crossing a street, and a blue vehicle is changing to the
center lane. However, the gray vehicle cannot see them due to the
occlusions of the two red vehicles. This can be resolved by sharing
the sensor data from either the red vehicle with the gray vehicle.
• Scenario 2 (blind spots from turning): A gray vehicle is turning
left at an intersection without a protected left-turn signal [12].
Meanwhile, a blue vehicle, which the gray vehicle cannot see, is
traveling straight from the opposite direction, causing a potential
collision. This risk can be eliminated if the red vehicle shares its
sensor data with the gray vehicle.
• Scenario 3 (distance-induced limited visibility): The blue vehicle
breaks down in themiddle of a road. Several oncoming gray vehicles
cannot detect it from far away due to the low sensor data resolution.
By aggregating their observed data, the broken down vehicle ismore
likely to be detected much sooner, preventing potential accidents.

Sharing Raw Sensor Data as Opposed to Processed Data.
Several studies explored vehicles sharing processed data such as in-
formation of detected objects [28, 47]. We instead advocate sharing
raw sensor data (when network resources permit) due to several lim-
itations of processed data. First, its limited data granularity cannot
support application-specific requirements. In other words, there
will be a loss of information during data processing. For example, in
Figure 1c, if none of the three gray vehicles can detect the blue vehi-
cle, combining their processed data is ineffective, whereas sharing

https://doi.org/10.1145/3447993.3483242
https://doi.org/10.1145/3447993.3483242
https://doi.org/10.1145/3447993.3483242

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Xumiao Zhang, et al.

raw sensor data may lead to successful detection. Second, sharing
processed data lacks generality, and may not be compatible with
diverse CAV applications. In contrast, raw sensor data has a simple,
fundamental, and universal data format to flexibly support a wide
range of CAV applications. Traditionally, sharing raw sensor data
was constrained by limited network resources, but this is being
changed by high-speed wireless networks such as 5G [51, 53, 70].

Sharing Raw Sensor Data in a Scalable Manner. There are a
limited number of works that do allow vehicles to share raw sensor
data [29, 54, 56], but at a very limited scale. They all take a vehicle-to-
vehicle (V2V) sharing approach which suffers from poor scalability.
As illustrated in Figure 1, oftentimes multiple vehicles need to get
involved in sensor data sharing, particularly for congested roads.
However, when many vehicles need to share their sensor data over
V2V, each vehicle has either to perform multicast/broadcast, which
suffers from low throughput in particular under mobility [71], or
to unicast multiple copies of the data, incurring high delay and
bandwidth overheads. Furthermore, a vehicle may not have enough
computational resources to process other vehicles’ data at line rate.

Differing from all existing work, in this paper, we develop a
system called EMP that scales up multi-vehicle sensor data sharing
through edge computing [37, 60, 62]. We define edge to be com-
puting and storage resources in close proximity to the vehicles,
which provides low network latency to each vehicle. In our scheme,
nearby vehicles upload their sensor data to the edge which creates
a global view by merging individual vehicles’ data. The edge can
then run customized CAV algorithms and return the corresponding
results (e.g., detected vehicles as shown in Figure 2). With the edge
support, each vehicle’s workload and network bandwidth usage can
be drastically reduced compared to the V2V scheme. Note that EMP
does not fully replace a CAV’s local processing, which is instead en-
hanced by EMP. For example, the local object detection results and
the results from the edge can be combined to increase the detection
coverage and accuracy. When there is a network blackout or the
edge is unavailable, vehicles can always fall back to the local mode.

Principled Spatial Partition. The key technical merit of this
paper is to address the core algorithmic challenge for EMP: how
do CAVs efficiently share their raw sensor data? Ideally, CAVs can
cooperatively create a disjoint spatial partition of the environment,
where (1) each CAV uploads only sensor data in its proximity, and
(2) the union of all CAVs’ sensor data forms the entire surrounding
environment. This strategy strikes a desired balance between band-
width consumption and data quality: there is no overlap among
CAVs’ data so no bandwidth is wasted; meanwhile, as mentioned
earlier, each CAV’s close proximity has the highest sensor data
quality. We find that mathematically, such a desired partition can
be generated by a Voronoi Diagram [25] where the area that each
vertex 𝑣 (a CAV in our context) belongs to consists of the points
whose distances to 𝑣 are less than or equal to those to any other
vertices. This key property nicely satisfies the above “proximity”
requirement of EMP.

Adapting to Available Network Resources. While partition-
ing based on Voronoi diagrams is effective, it does not consider the
available network bandwidth. For example, if the available band-
width of a CAV is low, then it should upload less data. This can be
realized by adjusting its uploaded area’s boundary in the Voronoi
diagram. We develop a robust algorithm that adaptively adjusts

the sensor data uploading area of each vehicle (i.e., the boundaries
in the Voronoi diagram) in real time according to the estimated
bandwidth of each CAV. In this way, vehicles with slow wireless
connections can partially “offload” their uploading tasks to their
neighboring vehicles.

Adapting to Network Resource Uncertainty. Wireless net-
work conditions are known to be highly fluctuating, in particular
undermobility. EMP embraces this through threemechanisms. First,
it assigns priorities to each CAV’s to-be-uploaded data, to ensure
that important portions (e.g., those that cannot be covered by other
CAVs’ data) are uploaded first, so they are the least vulnerable to the
network resource uncertainty. Second, the above scheme naturally
provides redundancy for regions that are perceivable from more
than one CAV, thus boosting the resilience to the network condi-
tion fluctuations. Third, in order to minimize the bandwidth waste
incurred by the above redundancy, the edge employs a lightweight
graph-based scheduling algorithm to efficiently detect if the entire
environment is fully uploaded in real time.

Implementation and Evaluations.We incorporate the above
algorithms into an edge-assisted multi-vehicle perception system
developed by us. Our system consists of a full-fledged coopera-
tive sensing pipeline including sensor data uploading, edge-side
data merging, 3D object detection, and vehicle-side perception en-
hancement using the edge-side results. The above components are
judiciously pipelined to ensure good runtime performance. We
evaluate our system through extensive emulations using photoreal-
istic sensor data and real-world LTE/60GHz network traces, and
real-world live tests. Our key results consist of the following:
• EMP can achieve real-time processing at 24 FPS and end-to-end
latency of 86 – 102 ms for the full partitioning-uploading-merging-
detection pipeline, when 2 to 6 vehicles are involved in sensor
sharing. EMP reduces the end-to-end latency by 49% – 65% com-
pared to its V2V sharing counterpart.
• Compared to having all vehicles upload their full frames, EMP’s
approach to adaptively uploading sensor data in vehicles’ proximity
incurs a negligible perception accuracy loss (0.1% – 2.2%) when
vehicle detection is performed on the merged view. Meanwhile,
EMP’s approach leads to a significant bandwidth usage reduction
of 32% – 58%.
•We conduct case studies under realistic traffic scenarios and show
that cooperative sensing powered by EMP can detect dangers (e.g.,
occluded vehicles in blind spots and far-away vehicles) earlier by
0.5 to 1.1 seconds, compared to a single vehicle’s perception, leading
to successful collision avoidance.
• To complement the real system results, we also conduct large-
scale simulations involving up to 20 vehicles. The results further
showcase the scalability and robustness of EMP under diverse road
traffic and wireless network conditions.

Overall, EMP is to our knowledge the first system that enables
edge-assisted multi-vehicle perception through raw sensor data
sharing. We make two major contributions in this paper: (1) From
the algorithmic perspective, we develop robust algorithms for scal-
able, adaptive, and resource-efficient sensor data sharing under
potentially fluctuating network conditions. (2) From the system
perspective, we incorporate our algorithms into a real system that
can provide extended perceptual range and detection of occluded
objects for CAVs.

EMP: Edge-assisted Multi-vehicle Perception ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

Ego-Vehicle

Blind
SpotsMissed Detections

Figure 2: A LiDAR point cloud (blue) and detected object
bounding boxes (green). The ego-vehicle fails to detect dis-
tant objects and loses information in the blind spots (red).

2 BACKGROUND AND MOTIVATION
Connected and autonomous vehicles (CAVs) are vehicles that can
perceive the surrounding environment and make driving decisions
to move safely with various on-board sensors and autonomous
driving software. They have wireless communication capability
and can thus exchange safety messages with other vehicles or in-
frastructures to enhance their situational awareness. LiDAR (Light
Detection and Ranging) [17, 20] is one of the major on-board sen-
sors. A LiDAR sensor functions by emitting uniform laser pulses at
different angles and capturing their reflections from objects. Then
it calculates the distance to those objects and generates a 3D point
cloud which consists of point coordinates relative to the sensor, to
represent the surroundings. Compared with cameras, LiDARs have
advantages including a longer range and robustness under poor
lighting conditions and inclement weather.

2.1 Benefit of Sensor Data Sharing
There are limitations of on-board sensors: (1) They suffer from
occlusion. Because of the rectilinear propagation of light, they
cannot "see through" non-transparent objects and can only provide
line-of-sight information. (2) The farther, the fewer details they can
capture. As LiDAR emits uniformly distributed lights and generates
data based on the reflected lights, the data resolution decreases as
the object distance from the sensor increases. Figure 2 illustrates
these limitations with a LiDAR point cloud. There are several blind
spots caused by the occlusion of the vehicles near the ego-vehicle.
The ego-vehicle also fails to detect some distant vehicles. All these
limitations bring road risks and affect driving efficiency for CAVs.

Different vehicles have views at different locations. It is possible
that objects occluded in the views of some vehicles can be easily
perceived by some others. Therefore, combining sensor data from
vehicles perceiving objects at various perspectives can effectively
eliminate occlusions and increase the perception resolution, thus
further avoiding potential road hazards, as demonstrated in the
examples in Figure 1.

As opposed to sharing processed data such as detected objects,
in this paper, we advocate sharing raw sensor data due to several
limitations of sharing processed data. First, the information granu-
larity decreases after processing the raw data to a higher layer of
data, such as extracted features or detected objects. For example, in
Figure 1c, a single gray vehicle may not detect the blue vehicle from
far away on its own (e.g., due to long distances or poor weather [11])

and merging their detection results will yield nothing, whereas com-
bining the observations from all the vehicles altogether may lead
to successful detection. Second, sharing processed data lacks gener-
ality. For example, vehicles may have different representations for
processed data (e.g., object classes). One detection algorithm may
output car, human, etc. while another outputs sedan, bus, cyclist,
pedestrian, etc. Instead, raw sensor data has a simpler data format
to flexibly support a wide range of CAV applications. Furthermore,
CAV’s local processing takes time. A CAV can share its sensor data
once the data is captured and some prepossessing is done. Then it
starts the local processing while waiting for the results from the
edge. Upon receiving the edge’s enhanced results, it can adjust the
driving decisions accordingly. In contrast, a CAV cannot share the
processed data until it completely finishes the local processing.

2.2 Need for an Edge-assisted System
In order to avoid such hazards during daily driving, some exist-
ing works leverage sensor data sharing to improve the vehicle’s
visibility [29, 54, 56]. However, these systems only enable vehicle-
to-vehicle (V2V) data sharing which suffers from poor scalability
from both the network and computation perspective. Network
overhead: There are many scenarios (Figure 1) involving multi-
ple vehicles for sensor data sharing. When the number of vehicles
grows larger than two, each vehicle has to either send more than
once or rely on another vehicle to relay its data, which introduces
redundancy, additional delay, and higher bandwidth consumption.
Computational overhead: Processing data shared from other ve-
hicles involves additional overhead, challenging the limited on-
board resources. We examine how the sensor data volume affects
the inference time of 3D object detection using a state-of-the-art
detection framework, PointPillars [41]. As shown in Figure 5, the
inference time is roughly proportional to the number of vehicles
which has a positive correlation with the data volume.

Edge computing services are becoming increasingly popular [5,
7, 10]. Edge nodes usually have more computational resources to
process aggregated sensor data compared to on-board hardware
which is equipped to process single-vehicle data. Communicating
with an edge server also involves lower latency compared to using a
remote cloud. Unlike V2V sharing, the vehicles only need to upload
their data once to an edge node which can process them together.

2.3 Challenges
Building such an edge-assisted system that processes vehicle sensor
data in real-time still poses several scalability challenges regarding
network and computational resources.
• It is extremely hard for existing wireless techniques to support
multiple vehicles simultaneously uploading raw sensor data in real-
time. A commercial 64-beam LiDAR collects point clouds (∼2MB1)
at 5-20Hz [20], which means the data can be generated at up to
300Mbps. How does the system reduce the data size with little
impact on perception performance?
• Although an edge node usually has more computational power
than individual CAVs, the processing time grows as the data volume
increases as demonstrated in Figure 5. How can the system ensure
real-time operation while providing an extended perception range?

1A point cloud contains ∼130K points (64 vertical angles and 2083 horizontal angles)
consisting of location and intensity information (𝑥𝑦𝑧-𝑖 , 4 floating-point numbers).

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Xumiao Zhang, et al.

Perception Module

S
en

so
r

Decompre
ssion

P
re

pr
oc

es
s

View
Merging

Object
Detection

Detection
Results

Point Cloud

Vehicles Edge

Compression

Partitioning

Adaptation Module

REAP Partitioning
Decisions

Navigation info

Planning and Control

Uploading
Scheduler

Vehicle Database
[location, bandwidth]

Ground Removal

Figure 3: System Architecture of EMP.

Vehicles Edge

Capture Frame n

Partition
Encode

Detection results

“Finish” signal Decode

Infer

⋯ ⋯

Partitioning decisions

Wireless
network

Remove ground

Partition
Encode

Frame n

Partitioning decisions

Merge
Capture Frame n+1

Remove ground

Figure 4: EMP Data Plane.

• The available network bandwidths vary across vehicles, leading
to different transmission times of data from different vehicles. Plus,
wireless networks can fluctuate in particular under high mobility.
How does the system adapt to the variability of network resources?
• Vehicles may upload frames at different times. There will be
tremendous computational overhead if the edge processes a frame
once it is received. In order to process data collected at similar times
from different vehicles together, how does the edge determine when
it can start processing the current frame and schedule for the next?

3 SYSTEM DESIGN
We propose EMP, an Edge-assisted Multi-vehicle Perception sys-
tem for efficiently sharing sensor data over wireless networks and
improving perception accuracy for CAVs. EMP tackles the above
challenges through several design decisions: (1) EMP offloads heavy
computation of cooperative perception from vehicles to an edge
node (§3.1); (2) EMP efficiently partitions point cloud data to reduce
network latency (§3.2); and (3) EMP strategically coordinates the
uploads from different vehicles (§3.3). EMP also incorporates view
merging (§3.4), ground removal and system-level optimizations
(§3.5) for boosting the performance of cooperative perception.

3.1 Edge-assisted Perception Architecture
At a high level, EMP offloads the cooperative perception from each
vehicle to the edge side so that the edge performs object detection
based on the aggregated sensor data and provides improved per-
ception results for better driving decisions. To achieve this, EMP
connects each vehicle with the same edge node with network chan-
nels in two layers, as shown in Figure 3:

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8

In
fe

re
n
c
e
 t
im

e
 (

m
s
)

Number of vehicles

Figure 5: Inference time.

Perpendicular
bisector

Vehicle

Area to be
uploaded

Figure 6: Voronoi Diagram.

• Data Plane transmits the sensor data from the vehicles to the
edge, and performs perception tasks at the edge. As shown in Fig-
ure 4, each vehicle preprocesses a single frame of sensor data (the
Preprocessing Module in Figure 3), and uploads the chunks to
the edge. The partitioning is necessary for point cloud data as the
size of a single frame can be large and there may not be enough
bandwidth to upload full frames from all vehicles to the edge in time.
Uploading chunk by chunk allows the edge to leverage partial point
cloud data if available. Upon receiving the point cloud chunks, the
edge merges these chunks with point cloud data from other vehicles
based on the precise locations of all vehicles after decompression,
forming a holistic point cloud as the view of the surrounding area.
The edge can thus perform 3D object detection [41] on the holistic
point cloud, and finally send the detection results back to each
vehicle (the Perception Module in Figure 3). The results consist
of locations, dimensions, headings, and confidence scores of the
detected objects. EMP pipelines the vehicle’s preprocessing and
edge’s perception, i.e., a vehicle can start transmitting the next
frame of the point cloud before receiving the detection results.
•Control Plane optimizes the network transmission of all vehicles
according to their locations and network conditions by guiding the
point cloud partitioning for vehicles, so that the data to be uploaded
by each vehicle is balanced and the edge can construct the holistic
point cloud promptly. The partitioning allows each vehicle to upload
its surroundings first, with the uploaded area adapted to its available
network resources. Before uploading the sensor data, each vehicle
sends a control message containing its real-time location to the
edge. For each control message received, the edge uses the location,
along with other vehicles’ locations, to determine the region of
the point cloud to upload for each vehicle. The decision region is
sent back to the vehicles in the form of multiple line equations
representing the region boundaries. Once a new frame of the point
cloud is generated, the vehicle partitions the frame following the
latest partitioning decision provided by the edge to reduce the data
size. All the logic resides in the Adaptation Module in Figure 3.

Note that when the network connectivity is poor or the edge
is unavailable, the vehicles can always run their local processing
for basic services. Besides, while we focus on the assistance from a
single edge in this paper, the EMP’s design can be flexibly extended
to the scenarios of multiple edge nodes by introducing sensor data
sharing among edge nodes based on vehicle locations and a han-
dover mechanism, which we leave for future work.

3.2 Edge-assisted Point Cloud Partitioning
Since a full frame of the point cloud data may not be uploaded
in time to the edge, the edge partitions the whole area into non-
overlapping regions so that each vehicle only uploads a subset of

EMP: Edge-assisted Multi-vehicle Perception ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

C

E

DL1 L4

L5

L3

L2
L7

L6A
B

d1
d2

Figure 7: Naive partitioning through Voronoi Diagram.

the points according to the corresponding decision region, to reduce
the amount of upload data.

One intuitive idea of such partitioning is to assign each point in
the 2D region (bird-eye view) to the closest vehicle. In this case, the
whole region is partitioned into multiple non-overlapping regions
close to each vehicle. Since the LiDAR point cloud has more de-
tailed information for the closer region, such partitioning ensures
that each region has the finest representation from point clouds
of multiple vehicles. Mathematically, such a partition is a Voronoi
diagram [25], as shown in Figure 6. For each vertex 𝑣 (a vehicle
in our context), there is a corresponding area that consists of the
points whose distances to 𝑣 are less than or equal to those to any
other vertices. Figure 7 visualizes an example of such a partition
on a global region consisting of five vehicles. The letters 𝐴 − 𝐸

represent the vehicles and 𝐿1 − 𝐿7 represent region boundaries, i.e.,
the perpendicular bisectors in the Voronoi diagram, between two
vehicles. For example, any points in 𝐵’s region are closer to vehicle
𝐵 than to any other, so we have 𝑑1 > 𝑑2 where 𝑑1 and 𝑑2 are the
distances from the point to each vehicle. Note that the boundaries of
a region for a vehicle only depend on neighboring vehicle locations,
and such boundaries can be derived by finding the perpendicular
bisectors between each pair of neighboring vehicles.

While the partitioning based on Voronoi diagrams is simple,
it suffers from two limitations. First, such partitioning depends
only on the relative location of the vehicles, without considering
vehicles’ network conditions. This can still lead to a large network
transmission time. For example, in Figure 7, when the network
bandwidth of vehicle 𝐴 is much lower than that of vehicle 𝐵, 𝐴 can
still take a longer time to upload its share of point cloud data than
B to the edge, causing the edge to wait longer before leveraging
𝐴’s point cloud data. Second, even if the initial partition of the
region is proportional to the uplink bandwidth of each vehicle, as
the vehicles move, the bandwidth can fluctuate significantly and
thus lead to longer transmission times for some vehicles.

To address these limitations, we propose REAP, a Region-based
Edge-Assisted Partitioning which is bandwidth-aware and adap-
tive to the bandwidth fluctuations. REAP decides the partitioning
boundaries based on both the vehicle’s location and estimated up-
link bandwidth (§3.2.1). REAP adapts to the fluctuating bandwidth
by assigning multiple small chunks to each vehicle for transmission,
taking the degree of bandwidth variation into account while parti-
tioning, and dynamically determining when to finish transmission
(§3.2.2).

C

E

DL1'

A
B

r1
d1

r2d2

R
R
L1

Figure 8: BW-aware partitioning through Power Diagram.

3.2.1 Bandwidth-aware Partitioning. The available network re-
sources of different vehicles can very likely vary. To cope with
the different wireless uplink bandwidths across vehicles, REAP par-
titions the global region based on both the vehicle location and the
estimated uplink bandwidth. At a high level, REAP achieves this
throughmoving the region boundary between two vehicles towards
the vehicle that has lower bandwidth. Such partitioning results in
a smaller region to upload for vehicles with low bandwidth and a
larger region for those with high bandwidth.

Specifically, REAP uses Power Diagram [24] in Mathematics to
determine the precise partitioning boundaries. Recall that a Voronoi
diagram draws the perpendicular bisector of the connection be-
tween every two neighboring vehicles as the partitioning boundary
(Figure 7), which means the distance to the boundary from both ve-
hicles are the same. A power diagram is a form of weighted Voronoi
diagram, in which each vehicle is assigned a weight, and the ratio
between the distances of two vehicles to the boundary is positively
correlated to the ratio of the corresponding weights of the two
vehicles. By adjusting the weights of the vehicles based on their
corresponding estimated uplink bandwidth, we can thus make the
partitioned region adapt to the vehicle’s uplink bandwidth (the
bandwidth usage is largely proportional to the uploaded area).

Figure 8 visualizes how the weights of vehicle 𝐴 and 𝐵, 𝑟1 and
𝑟2 respectively, determine the boundary between the two vehicles.
The boundary here is the radical axis of two circles centered on
these two vehicles and the weights are the circle radii. Any point
on the radical axis has the same power distance (𝑅) to both circles.
That is, 𝑅2 = 𝑑21 − 𝑟21 = 𝑑22 − 𝑟22 . As the estimated uplink bandwidth
of 𝐴, and thus 𝑟1, increases, the boundary 𝐿1 is moved to 𝐿′1. As
a result, vehicle 𝐴 with a better network condition is scheduled
to upload more data. Note that the bandwidth 𝑏𝑤 (data volume
divided by time) and the weight 𝑟 (distance) in such a diagram
intrinsically have different units. In REAP, we interpret the factor
between these two values as a configurable parameter 𝑘 which
reflects the sensitivity of the system to the bandwidth differences,
so we have 𝑟 = 𝑘 × 𝑏𝑤 .

To estimate the uplink bandwidth of each vehicle, the edge mea-
sures the size and transmission time of each point cloud chunk sent
from each vehicle, and computes its bandwidth as the exponentially
weighted moving average (EWMA) of the ratio between size and
transmission time.
3.2.2 Adaptation to Bandwidth Fluctuation. The bandwidth esti-
mation from the edge can be inaccurate as the network condition

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Xumiao Zhang, et al.

C1 C2 C3 C4

C1C4 C3 C2

VA

VC

VA VC

Lover Lorigin Lunder

Figure 9: Vehicle A’s (left) and C’s (right) point clouds partitioned into chunks
by REAP for adaptation to fluctuating bandwidth. 𝐿𝑜𝑣𝑒𝑟 , 𝐿𝑜𝑟𝑖𝑔𝑖𝑛 , and 𝐿𝑢𝑛𝑑𝑒𝑟 are
region boundaries. 𝐶1-𝐶4 represents chunk IDs.

C:0

E:2

D:3

A:2

B:1

Figure 10: Neighboring relationships (e.g., A-
D) and chunk uploading progresses (vehi-
cleId: chunkId).

is changing rapidly, especially for vehicles under high mobility.
REAP addresses this challenge by further partitioning each vehicle’s
region into multiple chunks, based on two scenarios, bandwidth
underestimation and overestimation. Each chunk is assigned an
upload priority to ensure that important portions are uploaded first,
so they are least vulnerable to the network resource uncertainty.

Specifically, for each pair of neighboring vehicles, besides the
boundary (𝐿𝑜𝑟𝑖𝑔𝑖𝑛) calculated based on the estimated bandwidths
(§3.2.1), REAP determines two additional boundaries, 𝐿𝑜𝑣𝑒𝑟 and
𝐿𝑢𝑛𝑑𝑒𝑟 , by replacing the original estimations 𝑏𝑤𝐴 and 𝑏𝑤𝐵 (band-
widths of vehicle 𝐴 and vehicle 𝐵) with two new pairs of values:
(1) 𝑏𝑤𝐴 × (1 − 𝛼) and 𝑏𝑤𝐵 × (1 + 𝛼), to account for the extreme
case of overestimation of 𝐴’s bandwidth and (2) 𝑏𝑤𝐴 × (1 + 𝛼) and
𝑏𝑤𝐵 × (1 − 𝛼), to account for the extreme case of underestima-
tion. These boundaries together partition a point cloud into smaller
chunks, as illustrated in Figure 92. Here 𝛼 defines the degree of
network fluctuation to tolerate and thus is correlated to the actual
network characteristics. We adopt an auto-tuning strategy to set 𝛼
during runtime. More specifically, the edge can adjust the 𝛼 value
using the standard deviation of estimated bandwidth values for
different vehicles in the system across a past period of time.

As shown, each vehicle has chunks numbered from 1 to 4. Chunk
1 (𝐶1) is the area enclosed by 𝐿𝑜𝑣𝑒𝑟 and is on the side far from
neighboring vehicles.𝐶1 should be uploaded in the highest priority
because 1) it is the easiest area to upload as it is derived assuming
the bandwidth is overestimated, and 2) it has the least overlapping
with other point clouds and other vehicles may not be able to help.
Chunk 2 (𝐶2) is enclosed by 𝐿𝑜𝑟𝑖𝑔𝑖𝑛 and𝐶1 boundary. If all vehicles
upload 𝐶1 and 𝐶2, the entire area is covered without overlapping,
which is the best case. Chunk 3 (𝐶3) is enclosed by 𝐿𝑢𝑛𝑑𝑒𝑟 and 𝐶2
boundary. It further extends towards the neighboring vehicles and
is closer to them.𝐶2 of one vehicle can be replaced by its neighbors’
𝐶3 in reduced quality. Chunk 4 (𝐶4) is essentially the point cloud
excluding the first three areas. It is the least important to the vehicle
because this chunk is mostly blocked by its neighbors which can
also capture more details. In case one vehicle is suffering from very
bad network conditions or just gets disconnected, its neighbors can
help by uploading their 𝐶4. From Figure 9, we can find that 𝐶2 of
vehicle 𝐶 is partially covered by 𝐶3 of vehicle 𝐴 (together with 𝐶3s
of 𝐴’s other neighbors). 𝐶1 of vehicle 𝐶 is partially covered by 𝐶4
of vehicle 𝐴.

Each vehicle sequentially uploads from 𝐶1 to 𝐶4. In this way,
vehicles first share areas that can be better captured and may only
2The notations (A-E) used in previous figures are kept for consistency and we select
vehicle𝐴 and vehicle𝐶 for better visualization.

upload overlapped areas at the later time of the transmission. In dif-
ferent scenarios as the actual bandwidth differs from the estimated
bandwidth, such a mechanism allows the edge to receive enough
data to construct a holistic view as soon as possible, reducing the
transmission time. In short, the goal of the adaptation in REAP is
to achieve that a chunk is always finished by the “best” candidates
who can provide the most details while other vehicles can help
provide data with fewer details to meet real-time requirements,
balancing the trade-off between the level of details in the point
cloud and the time to start perception at the edge.

3.3 Upload Scheduling
According to REAP, each vehicle uploads its chunks sequentially.
However, there will be unnecessary bandwidth waste if vehicles
keep uploading the remaining chunks after the edge has received
enough data to construct the global view. Besides, vehicles may
start uploading their frames at different times but it is meaningless
for the edge to process a frame without combining frames from
other vehicles. Therefore, the edge needs to schedule when the
transmission of a frame should be ended and it can start processing.

We propose a scheduling algorithm based on Delaunay Triangu-
lation [26] for the edge to determine from the received data. For a
given set (𝑃) of discrete points, 𝑃 ’s Delaunay Triangulation (𝐷𝑇) is
a triangulation of P such that no point in 𝑃 is inside the circumcircle
of any triangle in 𝐷𝑇 . In other words, there will be no points in-
side the triangle formed by joining any three "neighboring" points.
Figure 10 shows the vehicle locations and their neighboring rela-
tionships. For example, vehicle 𝐴, 𝐵, and 𝐷 are neighbors to each
other while vehicle 𝐸 is not 𝐴’s neighbor. Vehicle 𝐴 has neighbor 𝐵,
𝐶 , and 𝐷 . In this way, when calculating a Voronoi diagram (§3.2, or
Power diagram in §3.2.1), only𝐴-𝐵,𝐴-𝐶 , and𝐴-𝐷 are considered for
vehicle 𝐴 while 𝐴-𝐸 is not, which reduces the processing overhead
compared to deriving perpendicular lines of connections between
every two vehicles.

Based on how the chunks of each vehicle are divided, we define
three conditions where the edge can determine the transmission
of the current frame is finished: (1) 𝐶1 and 𝐶2 of all vehicles have
arrived; (2) 𝐶2 of one vehicle has not arrived (e.g., due to limited
bandwidth) but the 𝐶3 of all its neighboring vehicles have been
delivered; (3) Neither 𝐶1 nor 𝐶2 of one vehicle has arrived but its
neighbors finish uploading their 𝐶3s and 𝐶4s. Once any of these
conditions is satisfied, the edge broadcasts a “finish” signal to stop
all vehicles from uploading the remaining chunks.

As shown in Figure 10, the numbers after the vehicle letters
(names) represent the largest IDs of chunks received by the edge.

EMP: Edge-assisted Multi-vehicle Perception ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

According to the conditions defined above, if all the numbers are
2, then the entire area is perfectly covered and the edge can notify
the vehicles of the end of the transmission. However, although
the REAP algorithm enables vehicles to upload chunk by chunk,
from 𝐶1 to 𝐶4, their uploading progress will not be at the same
pace and the conditions are not satisfied by all the vehicles at once.
Therefore, in order to check the satisfaction of these conditions, we
develop a scheduling algorithm as follows: Every time a new chunk
is received, the edge will check whether the sum of a vehicle’s
largest chunk ID and another vehicle’s, is greater than 4. If so, that
means these two vehicles locally satisfy the conditions and the
ridge between them is removed from the set of ridges to be checked.
When no ridges in the diagram are left, the entire area is fully
covered and the frame is ready to be processed. Otherwise, the edge
keeps waiting for the remaining data and rechecks when the next
chunk arrives.

3.4 View Merging
After receiving frames from different vehicles, the edge performs
3D object detection on the holistic point cloud. However, generated
from the perspective of a vehicle, the point cloud frame origin is
the vehicle LiDAR sensor. Thus, in order to merge the data col-
lected by different vehicles, the edge needs to transform the points
of each point cloud from their original perspectives to a unified
coordinate system. Given a target origin and axis orientations,
the relative position (Δ𝑥 , Δ𝑦, Δ𝑧) and orientation (𝛼 , 𝛽 , 𝛾) of a ve-
hicle can be derived based on its navigation data (GPS/IMU) by
calculating the differences. The edge further generates a transla-
tion matrix, 𝑇 = [Δ𝑥,Δ𝑦,Δ𝑧]𝑇 , and three rotation matrices, 𝑅𝑧 (𝛼),
𝑅𝑦 (𝛽), 𝑅𝑥 (𝛾). Then, the transformation of a point 𝑃 = [𝑋,𝑌, 𝑍]
can be calculated as follows: 𝑃𝑑𝑠𝑡 = 𝑅𝑧𝑅𝑦𝑅𝑥 × 𝑃 + 𝑇 . Note that
this approach assumes the location data is reasonably accurate,
thanks to high-performance localization techniques [16, 21] which
can achieve centimeter-level accuracy. Existing point cloud calibra-
tion/registration techniques [32, 35, 49, 58] can be applied when
the navigation signals are less accurate.

3.5 Performance optimizations
We make several optimizations to save bandwidth, reduce end-to-
end latency, and improve processing efficiency.

Ground Removal. LiDAR sensors collect a significant amount
of data from the ground plane which is less useful than the data
of surrounding objects for perception. Therefore, EMP detects and
removes the ground points before sharing to save bandwidth. We
use an algorithm called Random Sample Consensus (RANSAC) [33]
assuming that the ground plane is the plane containing the most
points in a point cloud. Specifically, EMP randomly picks several
points to construct a plane and counts howmany points in the point
cloud fall near this plane. It repeats until the plane contains enough
points. As the height of the sensor (atop the CAV) is known, we
can estimate the approximate location of the ground to effectively
reduce ground detection time.

Edge-side Parallelization. As the edge receives multiple point
cloud chunks and locations from different vehicles, the processing
of incoming data can be done concurrently. EMP takes decoding,
merging, and location updating as individual tasks and parallelizes
the tasks for different chunks by scheduling a corresponding task

once a data chunk is received or decoded, or real-time navigation
data is received. In this way, the edge saves a significant amount of
time while waiting for new chunks.

Pipelining. To improve the system throughput, i.e., the frame
rate that EMP can support, we further pipeline the three parts (ve-
hicle, network, edge) in the system, any of which does not have to
wait until the current frame goes through the entire workflow be-
fore processing the next available frame. The vehicle is responsible
for ground removal, point cloud partitioning, and decoding. After
pushing frame 𝑛 into the send buffer queue, a vehicle can process
frame 𝑛 + 1 once it is available. Meanwhile, the edge is working on
a received frame such as frame 𝑛 − 1.

Cloud Mode. Although edge nodes are being increasingly de-
ployed [5, 7, 10], there could be areas where no edge nodes are
available. In this case, EMP will fall back to rely on a cloud server
for data aggregation and processing to provide seamless support.
This may lead to a longer transmission latency but CAVs can still
benefit from the cooperative perception. We evaluate the impact of
EMP’s cloud mode on detecting road hazards in §5.4.

4 IMPLEMENTATION
We implement EMP [15] in Java and the prototype consists of about
10K lines of code. Vehicle-side: Our prototype supports obtaining
the incoming sensor data (e.g., point clouds and navigation data)
from various sources including both real LiDAR / GPS and recorded
traces. The sensor data is provided to the processing pipeline at
a configurable and fixed rate (e.g., 10Hz in our experiments). The
partitioning module takes as input the coefficients of line equations
representing the chunk boundaries received from the edge and then
crops out the chunks through linear algebra operations. We modify
Draco [14] for LiDAR point cloud compression. The Draco APIs
are invoked through JNI. Edge-side: The real-time 3D inference is
built upon PointPillars [41], a state-of-the-art open-source 3D object
detection framework. It is computationally efficient and is adopted
by existing industry-level autonomous driving platforms such as
Baidu Apollo [8] and Autoware [13]. In the original implementation
of PointPillars, the code for the entire object detection pipeline
is integrated. We thus separate different modules in the pipeline
(model loading, model configuration, inference, etc.), and make
model loading/configuration a one-time operation to enable fast
inference. The edge also uses Draco to decompress the uploaded
point clouds. For all other components in Figure 3, we implement
them by ourselves. The vehicle and edge communicate through
a custom protocol over TCP. Changing the underlying transport
protocol to other protocols such as QUIC [42] is straightforward.

Note, EMP is designed for efficient point cloud data sharing. In
this paper, we focus on LiDAR point clouds for demonstration while
the system is generally compatible with other CAV sensors which
capture point cloud data, such as stereo cameras.

5 EVALUATION
We evaluate the performance and scalability of EMP under differ-
ent vehicle and network settings, demonstrating its advantage over
vehicle-to-vehicle sharing schemes (§5.2). We examine EMP’s en-
hancement on perception (§5.3). We showcase how EMP improves
road safety with driving case studies (§5.4) and show the benefit
of sharing raw data over sharing processed data. In addition, we

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Xumiao Zhang, et al.

present the latency contributed by key EMP system components
and the processing throughput improvement brought by system-
level optimizations (§5.5). A series of large-scale simulations are
conducted to further prove the effectiveness of REAP under a wider
range of vehicle numbers (§5.6).

5.1 Experimental Setup and Methodology
Due to a lack of open infrastructure support for multi-vehicle ex-
periments, we adopt trace-driven emulation to evaluate EMP in
our local testbed and compare our system with existing work. To
emulate vehicle behavior in our experiments, instead of running
a LiDAR device to generate data in real time, we replay LiDAR
traces from a multi-vehicle LiDAR dataset we collected in advance.
Our setup considers both diverse driving scenarios and realistic
network conditions to comprehensively evaluate the performance
and scalability of EMP. We also conduct live tests to demonstrate
that EMP can work well under real networks.
• Comparing EMP with Existing Work.We consider two vari-
ants of EMP to evaluate our design choices: (1) EMP-Naïve: EMP
without REAP adaptive partitioning and scheduling, i.e., vehicles
upload full point cloud frames to the edge node; (2) EMP: EMPwith
all components enabled. We further compare them with vehicle-to-
vehicle sharing schemes: (1) V2V-Naïve: each vehicle shares full
frames with every other vehicle; (2) V2V-Pro: each vehicle shares
partial point clouds with other vehicles using REAP partitioning3
•Multi-vehicle LiDARDataset.All existing LiDAR datasets such
as KITTI [34] only contain traces collected by a single vehicle, while
the evaluation of multi-vehicle perception requires the traces col-
lected from multiple vehicles which are physically proximate at the
same time. To fill this gap, we collect the first multi-vehicle LiDAR
dataset using DeepGTAV-PreSIL [38], a tool to collect synthetic Li-
DAR traces simultaneously from multiple vehicles in a video game,
GTA V. GTA V contains realistic 3D modeling of city landscape,
vehicles, stationary objects to emulate real-world scenarios. Be-
sides LiDAR data, DeepGTAV-PreSIL also generates object labels
for training machine learning models of perception. We extend the
tool to enable panoramic (360◦) LiDAR scans besides the default
front-view-only settings. We construct our dataset by randomly
driving a car in the game and collect sensor data from multiple
nearby cars. Our multi-vehicle LiDAR dataset contains driving sce-
narios in both densely-populated urban areas and open rural areas,
with various numbers of vehicles in the scene.
•Network Conditions. The vehicle-to-infrastructure networking
conditions [55] are emulated by throttling the bandwidth for indi-
vidual TCP connections between each vehicle and the edge node
and adding 10ms latency using Linux tc [1]. To acquire realistic
uplink bandwidth of cellular networks for our experiments, we
collect LTE uplink traces from driving at different urban and rural
locations. We run 10-minute 100Mbps UDP uploads for a number of
times over AT&T LTE networks on two smartphones (Pixel 2 and
Nexus 6), to saturate the uplink. We run tcpdump at the server side
to record raw packet traces and calculate the uplink throughput ev-
ery 100 ms. To emulate high-bandwidth networking used by future
vehicular communication [30], using a similar approach, we collect
uplink bandwidth traces under 60GHz networks (802.11ad) with

3The partitioning for V2V-Pro is only based on vehicles’ relative locations as bandwidth
awareness cannot be achieved without an edge.

a stationary NETGEAR Nighthawk X10 AD7200 WiFi router [18]
and a moving 802.11ad-compliant laptop. Note the bandwidth sta-
tistics of our LTE and 60GHz network traces are 14.0 ± 3.4Mbps
and 267.0 ± 71.4Mbps, respectively. Thus the standard deviation is
around 24% and 27% of the mean throughput which is close to the
𝛼 value (∼ 0.3, defined in §3.2.2) we observed during emulation.
• Trace-driven Emulation and Real-world Test.We deploy the
EMP-edge instance on a server equipped with an Intel Xeon 4110
CPU clocked at 2.10GHz, an NVIDIA RTX 2080 GPU and 96GB of
DDR4 RAM. The edge takes up to 390% CPU usage and 5GBmemory
when running with 6 vehicles. For the trace-driven emulation, We
run multiple EMP-vehicle instances on another machine equipped
with an Intel Xeon E5-2640 v2 CPU clocked at 2.00GHz to share the
computation resources. Each vehicle uses up to 2 cores and 2GB
memory, representing the often less computing power of a vehicle
compared to an edge. For our real-world tests, we place a laptop (4
cores, 8GB memory) connected to LTE networks via tethering on a
vehicle to run an EMP-vehicle instance.
• Large-scale Simulation.We perform large-scale simulations to
understand the performance of REAP algorithm under scenarios
having a large number of vehicles. To mimic real-world driving
scenarios, we randomly generate vehicle locations in a fixed area
(120m×30m) and ensure the horizontal/vertical distance between
any two vehicles is greater than 3m/6m. We simulate the network
transfer of each vehicle based on the size of to-be-uploaded data
which is measured after applying REAP partitioning and Draco [14]
compression algorithms to the point cloud data, with the replay of
our real network uplink bandwidth traces.

5.2 End-to-end Performance
EMP is able to provide real-time enhanced perception under various
processing workload and network conditions. We first compare the
end-to-end performance and scalability of EMP with V2V. Note
that the bandwidth between vehicles will be constrained when a
vehicle simultaneously shares its data to multiple vehicles, which
we also emulate using tc.

Figure 11 shows the end-to-end latency of the four schemes when
the number of vehicles in the system varies from 2 to 64. End-to-
end latency here is defined as the duration between when a vehicle
starts preparing the collected sensor data and when the edge or a
receiver vehicle finishes processing (e.g., decoding, merging) data
from all vehicles, which means the data is ready for perception. This
is the additional latency introduced by EMP or the V2V counterpart
and all the following steps such as perception need to be performed
either on the edge or on a CAV. From the figure, we can find that
EMP performs the best among all schemes and EMP-Naïve performs
slightly worse because vehicles are dealing with full frames, which
increases overhead for encoding/decoding and uploading. V2V-Pro
benefits from the partitioning algorithm. However, as the number of
vehicles increases, the latency of either vehicle-to-vehicle schemes
(V2V-Naïve and V2V-Pro) skyrockets while the EMP latency stays
around 100ms, saving 49–65%. EMP also outperforms EMP-Naïve
by 36%–43%, which highlights the advantage of REAP partitioning.
Next, we show the distribution of EMP latency in Figure 12. The
vast majority of frames experience less than 100ms latency, the

4Based on the average traffic and vehicle speed in city areas in the U.S [3, 9], the
average vehicle density is 0.06 /m (6 vehicles in a 100m long road)

EMP: Edge-assisted Multi-vehicle Perception ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6

L
a
te

n
c
y
 (

m
s
)

Number of vehicles

V2V-Naive
V2V-Pro

EMP-Naive
EMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140 160 180 200 220

C
D

F

Latency (ms)

2v
3v
4v
5v
6v

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6

L
a
te

n
c
y
 (

m
s
)

Number of vehicles

EMP-LTE EMP-60GHz

 0

 50

 100

 150

 200

 250

2 3

L
a
te

n
c
y
 (

m
s
)

Number of vehicles

EMP-Naive
EMP

Figure 11: End-to-end latency
of EMP/V2V systems.

Figure 12: Latency distribution
of EMP.

Figure 13: Latency of EMP un-
der different networks.

Figure 14: Latency of EMP in
real-world driving tests.

Table 1: Size reduction brought byREAPpartitioning and the
size of shared data per frame (raw point cloud size: ∼2.0MB).

of vehicles 2 3 4 5 6
REAP size reduction 32.4% 52.4% 58.0% 50.0% 50.3%
Shared data size (KB) 38.8 29.4 29.7 37.1 36.4

recommended processing delay for autonomous driving [46]. Even
in the worst case (e.g., due to a network blackout) a vehicle does
not receive the results for some frames, it can still rely on local
processing for driving decisionmaking. EMP is designed to enhance
CAVs’ local processing instead of completely replacing it.

To better understand how EMP saves bandwidth, we also calcu-
late and show the size reduction of REAP partitioning in Table 1:
the average size of partitioned chunks which are shared to the edge
is 49.7% of the original point cloud size across all setups (2 to 6 ve-
hicles). Further with ground removal and point cloud compression
applied, each vehicle only needs to upload 30–38KB for each frame.
The data transmission can be finished within ∼23ms over LTE.

EMP is robust under various network conditions. The current
CAV communication technologies are mainly DSRC and C-V2X
which have limited bandwidth [39]. The emergence of 5G NR and
other short-range mmWave networks can provide higher band-
width and increase the vehicular communication capability [50].
However, there could be severer fluctuations under mobility, so we
evaluate EMP under LTE and 60GHz (also used in [56]) networks
and plot the results in Figure 13. EMP performs better under 60GHz
networks as the high bandwidth helps reduce uploading times and
the adaptation mechanism still maintains the system robustness un-
der bandwidth variability. Note the bandwidth standard deviation
of the LTE and 60GHz traces are 3Mbps and 71Mbps, respectively.

Lastly, we conduct real-world driving tests with EMP. Figure 14
shows the end-to-end latency of EMP and EMP-Naïve under 2/3-
vehicle scenarios. As the vehicles only need to share the data once
to the edge instead of multiple times to different receiver vehicles,
the latency does not inflate when increasing the number of vehicles.
REAP helps reduce the processing delay by reducing the uploaded
data size so that EMP outperforms EMP-Naïve. We notice that the
latency under real networks is higher than that measured in the
emulation. This is likely because we are using commercial cellular
networks (56ms of average RTT as measured) instead of directly
communicating between vehicles and a real edge node (<10ms).

5.3 Perception Enhancement
EMP can enhance CAVs’ local perception while reducing bandwidth
consumption to achieve real-time processing. We examine how
EMP improves the perception of autonomous driving, by comparing

 0

 20

 40

 60

 80

 100

2v 3v1v

A
c
c
u

ra
c
y
 (

%
)

CAV EMP-Naive EMP EMP-Naive+CAV EMP+CAV

 0

 20

 40

 60

 80

 100

2v 3v1v

A
v
e

ra
g

e
 I

o
U

 (
%

)

CAV EMP-Naive EMP EMP-Naive+CAV EMP+CAV

Figure 15: Detection Accuracy (left, IoU threshold = 0.5) and
Average IoU (right) of single-CAV perception, multi-CAV
perception, and combined perception.

the detection accuracy of single-CAV perception on one vehicle’s
point clouds (CAV), multi-CAV perception on views merged from
2/3 vehicles’ data (EMP), and combined perception (EMP+CAV).
The point clouds are merged in two ways: merge from full frames
(EMP-Naïve) and merge from partitioned frames using REAP.

To measure the detection accuracy, we calculate the Intersection
over Union (IoU) between the detection results (locations and di-
mensions of detected object bounding boxes) and the ground truth,
which ranges from 0 to 1. A detection is true if its IoU with the
label is higher than a threshold (0.5, as widely used in the computer
vision community). Then we calculate the ratio of true detections
out of all ground truth objects. We also directly calculate the av-
erage IoU for the detected objects, in order to evaluate in a more
fine-grained manner. When combining results from the edge and
the CAV, if two detections match the same object, we record the
one with a higher IoU. Besides, the locations of vehicles in the sys-
tem are known (IoU = 1) as they are reported to the edge together
with point cloud data. We focus on the 80𝑚 × 50𝑚 area in front of
vehicles (front view).

Figure 15 plots the detection accuracy and average IoU for each
setup. We find that EMP perception outperforms CAV perception
under both metrics. With EMP, the detection accuracy of combined
results from edge’s and CAV’s is even higher. Comparing the per-
formance of detection on views merged from full frames and those
on REAP-generated frames, the accuracy is reduced by 0.1% – 2.2%,
for 2-vehicle and 3-vehicle results. This indicates that REAP only
introduces a negligible perception accuracy loss while bringing
significant bandwidth saving as shown in §5.2. Therefore, we can
conclude that EMP successfully enhances CAVs’ local perceptions.

We also study the impact of ground removal on perception, by
running object detection on the point clouds with ground points
(original data). Compared with the detection accuracy shown in
Figure 15 (left), the accuracy differs by -2.58% – 1.26% (not shown
in the figure). Hence, the perception will not be affected by ground
removal while sometimes it can even be slightly improved, possibly

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Xumiao Zhang, et al.

due to the reduction of noise from the ground. We run the same
emulation on EMP without ground removal and the results show
that EMP creates 27% – 33% less end-to-end latency.

It is worth noting that the dataset and the object detection model
have limitations that may negatively affect the results. First, the
vehicle sensors are not fully synchronized. As a result, the object
locations in the frames of two vehicles can be slightly different
and thus the detected object will have a location offset, lowering
the IoU. The issue can be caused by the speed difference between
vehicles and the movement of the object itself. To mitigate it, we use
data collected by stationary vehicles while other objects can still
move. Second, the detection model is trained with single-vehicle
data5 whose patterns are different from merged data, so the model
may not perform perfectly on multi-vehicle data. Hence, the multi-
vehicle perception is expected to perform better without these
issues. Fully solving them can be non-trivial and we leave it for
future work.

5.4 Case Study: Road Hazards Avoidance
Autonomous driving can benefit from EMP which provides vehi-
cles with more knowledge of road traffic and more time to make
decisions. EMP’s design of sharing raw sensor data performs better
than sharing processed data. To showcase such benefits, we conduct
case studies and assess how EMP avoids potential road hazards in
different scenarios. We customize vehicle locations in GTA V to
construct the three scenarios mentioned earlier in Figure 1. Due to
the limited performance of existing 3D object detection frameworks
on pedestrians and cyclists [34], we simplify the scenarios to only
involve vehicles and the benefits can still be shown. We measure in
which frame the vehicles can detect the hazards with EMP at the
earliest versus in a single-CAV setup.

Blind Spots. In this scenario (Figure 16 (a, b)), from the view of
the ego-vehicle (the vehicle with a first-person view), a sedan is
blocked by a big delivery truck behind it. The sedan is changing
to the center lane. As illustrated in the camera images, without
EMP, the ego-vehicle cannot detect the sedan until Frame X+8 due
to occlusion. However, with EMP, the ego-vehicle can detect the
sedan in Frame X, 0.8s earlier than the single-CAV setup.

Unprotected Left Turn. As shown in Figure 16 (c, d), the ego-
vehicle is trying to make a left turn, and has to judge on its own
whether there are vehicles going straight from the opposite direc-
tion. An SUV is blocking the ego-vehicle view of a sedan behind
the SUV. With EMP, the ego-vehicle can detect the sedan in Frame
Y instead of Frame Y+12 at which point it may have already started
turning. Figure 17 visualizes the point cloud of the ego-vehicle
(CAV) for Frame Y, the point cloud merged from two full frames
(EMP-Naïve), and the point cloud merged from partitioned frames
(EMP). The sedan is successfully detected in the last two setups.

We also analyze how EMP can avoid the potential collision in
both scenarios. As shown in Table 2, the initial distances between
the target vehicle and the ego-vehicle are 28m and 25m, respectively.
In city areas, vehicles drive on average at 9.2m/s [9] and the braking
distance is around 20m correspondingly [2]. For a single CAV, there
will be a 0.8s/1.2s delay from frame differences. Together with
the earlier experimental data on processing latency, we derive the

5To our knowledge, no existing work on point cloud-based object detection has inves-
tigated training using views merged from multiple point clouds.

remaining distance when the ego-vehicle detects the target vehicle.
We can learn from the results in Table 2 that, without EMP, the
CAV only has a distance of less than 20m when it is aware of the
occluded vehicle, while with EMP, the CAV system or the drivers
have enough time to react. We also evaluate EMP cloud mode and
calculate the remaining distance, and it is still above 20m.

Table 2: Distance when detecting the target vehicle (m).
Scenarios Init. distance EMP (EMP-cloud) CAV
Blind spots 28 26.3 (25.4) 19.8
Unp. left turn 25 23.5 (22.5) 13.2

Distant Broken Down Vehicle. In this case study (Figure 1c),
we show that sharing processed data can fail to detect the distant
vehicle earlier. Three vehicles are approaching a car broken down
in the middle of the road. With EMP, the broken down vehicle is
detected in Frame Z, while the earliest frames where each single
vehicle (left, middle, and right) can detect the broken down vehicle
are Z+10, Z+6, and Z+14, respectively. That means, by combining
their processed data on the edge the detection success frame is
Frame Z+6. Further taking into account the processing latency,
sharing raw sensor data with EMP can detect the hazards 0.5s earlier
than sharing processed data. Additionally, we repeat the test over
EMP-Naïve in which the vehicles share full frames and the broken
down vehicle is detected 7 frames earlier. Without partitioning, all
data were uploaded to the edge so the details of the object build up
even faster as the three vehicles approach the distant one, showing
a trade-off between transmission overhead perception performance.

5.5 Overhead Breakdown
We break down the latency of each system component and compare
them in EMP and EMP-Naïve (no REAP partitioning and schedul-
ing) to highlight the benefit of our design decisions. We then show
the throughput (FPS) improvement brought by EMP edge-side par-
allelization and pipelining.

Figure 18 presents the overhead of each component. Thanks to
the REAP partitioning and scheduling, the uploading can be fin-
ished before all the vehicles share their full frames, as soon as the
edge receives enough chunks to build the global view. Thus, the
encoding, uploading, and decoding times of EMP are significantly
reduced, compared to those of EMP-Naïve. There is also a small sav-
ing on the merging time. The saving on these components is much
more than the additional latency introduced by REAP partitioning
(6.57 ms). Besides, we also measure the overhead of inference which
is the time to run 3D object detection on merged frames generated
from both system schemes (Figure 19). Corresponding to the pre-
liminary results discussed in §2.2, inference overhead increases as
the number of vehicles increases. This is because more vehicles
lead to a larger amount of points in the merged global view. EMP
saves 21-33 ms for this step.

As mentioned in §3.5, we optimize the system workflow to in-
crease throughput of EMP. Figure 20 illustrates the pipeline with
the average latency of each part. The throughput is determined
by the vehicle side processing which takes the longest time (41.39
ms), which means the system can process at 24 frames per second.
Note that we directly apply Draco [14] for point cloud compression.
More advanced compression approaches [44] can further reduce
the vehicle-side latency.

EMP: Edge-assisted Multi-vehicle Perception ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

(a) Scenario 1 - Frame X (b) Scenario 1 - Frame X+8 (c) Scenario 2 - Frame Y (d) Scenario 2 - Frame Y+12
Figure 16: Image data collected by the ego-vehicle in two scenarios where EMP detect road hazards earlier.

Ego-Vehicle

?

CAV Ego-VehicleEMP-Naive Ego-Vehicle

SUV

EMP

Figure 17: LiDAR point clouds in Scenario 2. The occluded sedan can be detected in both EMP setups.

 0

 10

 20

 30

 40

 50

 60

Ground Partition Encode Upload Decode Merge

O
v
e

rh
e

a
d

 (
m

s
)

Components

EMP-Naive
EMP

 0

 20

 40

 60

 80

 100

 120

 140

2 3 4 5 6

O
v
e

rh
e

a
d

 (
m

s
)

Number of vehicles

EMP-Naive
EMP

Figure 18: Overhead of each
system component.

Figure 19: Inference overhead
on merged frames.

Time

Workflow

Vehicles

Network

Edge

Upload
22.97ms

⋯

⋯

⋯

Fr
am

e
1

Fr
am

e
2

Fr
am

e
3

Fr
am

e
2

Fr
am

e
3

Fr
am

e
4

Fr
am

e
3

Fr
am

e
4

Fr
am

e
5

41.39 ms 41.39 ms 41.39 ms

Decode
19.12 ms

Merge
7.26 ms

Decode
19.12 ms

Merge
7.26 ms

Decode
19.12 ms

Merge
7.26 ms

19.12 ms 19.12 ms 19.12 ms

Upload
22.97 ms

Upload
22.97 ms

Upload
22.97 ms

Remove
ground
9.82 ms 6.57 ms

Encode
25.00 ms

Partition Remove
ground
9.82 ms 6.57 ms

Encode
25.00 ms

Partition Remove
ground
9.82 ms 6.57 ms

Encode
25.00 ms

Partition

Figure 20: Edge-side parallelization and pipelining enable
EMP to process at 24 FPS.

5.6 Large-scale Simulation
We next study the scalability of REAP partitioning algorithm on
reducing uploaded data size and coping with network fluctuations
under a large number of vehicles. We conduct large-scale simu-
lation on the point cloud transmission with LTE uplink network
traces and compare the performances of 3 settings: (1) vehicles
upload full point cloud frames (Baseline); (2) vehicles partition data
based on their locations following the Voronoi diagram (Voronoi);
(3) vehicles partition data with REAP (REAP). In detail, we mea-
sure maximum frame uploading time (𝑡𝑚𝑎𝑥) among all vehicles. For
REAP, it is the time between when the first byte from any vehicle
is sent and when the data from all vehicles can cover the entire
area, which means it is ready for processing based on the condi-
tions defined in §3.3. Figure 21 (a) plots 𝑡𝑚𝑎𝑥 averaged over 1000

 0
 20
 40
 60
 80

 100
 120
 140
 160

 2 4 6 8 10 12 14 16 18 20M
a
x
 U

p
lo

a
d
in

g
 t
im

e
 (

m
s
)

Number of vehicles
 (a) LTE trace

Baseline Voronoi REAP

 0
 20
 40
 60
 80

 100
 120
 140
 160

 2 4 6 8 10 12 14 16 18 20M
a
x
 U

p
lo

a
d
in

g
 t
im

e
 (

m
s
)

Number of vehicles
 (b) Stress test

Baseline Voronoi REAP

Figure 21: Max uploading time of EMP remains stable when
there are different numbers of vehicles in the system.
runs. By removing redundant data based on vehicle locations, the
Voronoi partitioning outperforms the Baseline. Further consider-
ing estimated bandwidths of vehicles and dividing the frames into
several parts so that vehicles can help each other by opportunisti-
cally uploading, REAP provides the best transmission performance.
Noticeably, when the number of vehicles increases from 4 to 5,
𝑡𝑚𝑎𝑥 increases dramatically for Baseline and Voronoi schemes. The
reason for such a sharp increase is that the bandwidths in the fifth
randomly selected piece of LTE traces are mostly very low, making
the fifth vehicle send the slowest. However, the results of REAP
remain stable, thanks to its bandwidth awareness and adaptation.
Besides, the standard deviation of 𝑡𝑚𝑎𝑥 across different runs be-
comes better as we enable partitioning, and add bandwidth-aware
and adaptation (Baseline: 50.30, Voronoi: 40.07, REAP: 11.68).

To evaluate the system scalability under extreme network condi-
tions, we conduct a stress test. We randomly generate bandwidth
profiles for different vehicles following normal distributions. The av-
erage bandwidths vary greatly across different vehicles (4-18Mbps)
and the standard deviation is 1/4 of the mean. We also impose up
to ±40% estimation errors for REAP. As shown in Figure 21 (b), the
performance of different algorithms aligns with the first simulation
results, proving the robustness of REAP.

6 RELATEDWORK
Cooperative Perception. Various efforts have been made on co-
operative vehicular perception. AVR [56] extends two vehicles’

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Xumiao Zhang, et al.

vision by wirelessly sharing stereo camera data among each other.
The See-Through System [54] streams video data directly from
a leader vehicle to a follower to enhance the visibility of the fol-
lower’s driver. Cooper [29] improves 3D object detection algorithms
for sensor sharing but they rely on a single-vehicle dataset and
simulate cooperative perception by merging data collected by the
same vehicle at different timestamps. Arnold et al. [22] instead
give attention to perception using stationary infrastructure sensors.
There are other studies that target vehicle-to-vehicle communica-
tions [31, 40, 66, 72]. However, existing wireless techniques cannot
support sharing of raw sensor data at a high frame rate especially
as the system scales up. Prior works mostly focus on data exchange
between two vehicles (e.g., a leader and a follower) and do not eval-
uate vehicle-to-vehicle sharing at scale. EMP employs edge servers
to aggregate data from vehicles, which allows each vehicle to only
upload the data once instead of sharing multiple times to different
peer vehicles. We further evaluate its performance with various
numbers of vehicles in the system.

Beyond sharing raw sensor data, feature-level and object-level
sharing approaches are explored in order to save bandwidth and
reduce processing complexity. F-Cooper [28] designs a cooperative
perception framework based on features extracted from point cloud
data. This solution may not save much bandwidth (feature extrac-
tion may increase the data dimension and consequently the size)
while sacrificing part of the original information. FusionEye [47]
leverages Bipartite Graph to merge objects detected from image
data. Rauch et al. [57] discuss sharing locally perceived object data
and investigate the temporal and spatial alignment for the shared
data. However, object-level sharing can fail when there are missed
objects in the single-view detection since the missed ones will
never appear in the combined data. In this work, to retain impor-
tant sensor details while reducing bandwidth requirements, we
enable efficient raw sensor data sharing by carefully partitioning
the data and prioritizing different portions to be uploaded.

Edge Computing. Offloading heavy computational tasks from
devices with limited resources such as smartphones and vehicles
is a promising option to reduce on-board processing overhead.
EAVVE [75] leverages edge computing to augment vision for vehi-
cles without or with insufficient data processing capabilities. Liu et
al. [48] propose to offload object detection tasks for mobile AR to
an edge to achieve high detection accuracy and low end-to-end
latency. GRACE [69] is a compression algorithm which leverages
edge nodes for image inference while reducing network bandwidth
consumption. Wang et al. [65] build a real-time video analytics
system on autonomous drones involving edge-assisted processing.
EMP’s sensor sharing design can also be extended for other mo-
bile entities such as drones whose fields of view can be limited, to
facilitate video analytics on tasks such as search-and-rescue and
wildlife protection.

Vehicular Applications. There are many CAV applications
that can make use of on-board sensor data such as 2D images and
3D point clouds and benefit from EMP’s sharing framework. For
example, connected and autonomous driving systems rely on sensor
data for object detection [41, 61, 73], object tracking [23, 59, 74],
motion prediction [68], and path planning [45]. Sharing sensor
information can provide CAVs with a broader understanding of the
surroundings and eventually lead to a safer driving environment.

7 DISCUSSION
Security and Privacy Considerations. It is possible in real world
that a malicious vehicle sends incorrect data misleading edge’s per-
ception [27, 63, 64]. While beyond the scope of this work, there are
several possible solutions: (1) The edge distributes certificates to
vehicles using protocols like P2PCD [67] at the beginning to ensure
trusted communication and cross-validate the data from different
vehicles. It will revoke certificates from specific vehicles upon anom-
aly detected. (2) Trusted execution environment (TEE) [19, 36] can
be deployed at the vehicle side to prevent the attacker from send-
ing fake data. Besides, while raw data may give less privacy, the
edge can be configured to only use the shared data for enhancing
perception without other purposes (e.g., traffic surveillance).

Multi-edge Support andHandover across Edges. In this work,
we mainly focus on the assistance on CAV perception from a single
edge but the EMP’s core design can be flexibly extended to support
multiple edge nodes. In order to enable handover across edges, the
serving edge (the edge that a vehicle is communicating with) needs
to forward data uploaded by vehicles near the boundary of two
edge nodes which can be identified from vehicles’ locations. Then
the serving edge signals those vehicles so that they will share future
data with the target edge (the serving edge after handover).

Adoption of the EMP System. Many multi-agent collabora-
tion systems [66, 76] face a cold start issue where the system cannot
work (well) without enough agents to have been equipped with
necessary system functions and thus new users may not be mo-
tivated to join the system. However, this issue is not critical in
EMP since it is incrementally deployable. EMP does not require all
vehicles to install it together. EMP cannot enhance the perception
with only one vehicle, but as the number of vehicles ramps up,
the effectiveness will significantly improve, as demonstrated in the
experiments.

Moreover, future work can explore improvements in sensor shar-
ing and cooperative perception. EMP’s REAP algorithm partitions
the sensor data based on vehicle locations and network resources.
Further accounting for occlusions to adjust the region boundaries
may lead to better performance. We are also planning to boost the
edge-side perception by innovating the multi-vehicle data merging
and the object detection framework on multi-vehicle data. PER-
CEIVE [43] and Lumos5G [52] provide potential solutions for opti-
mizing the EWMA-based uplink bandwidth estimation.

8 CONCLUDING REMARKS
Through edge assistance and adaptive spatial partitioning, EMP
makes multi-vehicle perception scalable, robust, and efficient. We
believe that EMP can enable or boost a wide range of cooperative
sensing applications that require multiple participating vehicles, in
particular given the fast deployment of mobile networks such as 5G
that offers high bandwidth and low latency. In addition to ground
transportation, the underlying concept of EMP can be potentially
generalized to other domains such as cooperative UAVs (drones).

ACKNOWLEDGMENTS
We would like to thank our anonymous shepherd and reviewers for
their valuable comments and feedback. This work was supported in
part by NSF Award CMMI-2038215, CMMI-2038559, CNS-1930041,
CNS-1915122, and CCF-1628991.

EMP: Edge-assisted Multi-vehicle Perception ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA

REFERENCES
[1] 2001. Linux Traffic Control. https://man7.org/linux/man-pages/man8/tc.8.html.
[2] 2013. Vehicle Stopping Distance and Time. https://nacto.org/docs/usdg/

vehicle_stopping_distance_and_time_upenn.pdf.
[3] 2016. Annual Traffic Report - WSDOT. https://www.wsdot.wa.gov/mapsdata/

travel/pdf/Annual_Traffic_Report_2016.pdf.
[4] 2018. How autonomous vehicles could save over 350K lives in the US and

millions worldwide. https://zdnet.com/article/how-autonomous-vehicles-could-
save-over-350k-lives-in-the-us-and-millions-worldwide/.

[5] 2019. AT&T integrating 5G with Microsoft cloud to enable next-generation
solutions on the edge. https://news.microsoft.com/2019/11/26/att-integrating-
5g-with-microsoft-cloud-to-enable-next-generation-solutions-on-the-edge/.

[6] 2019. Study shows autonomous vehicles can help improve traffic flow. https:
//phys.org/news/2018-02-autonomous-vehicles-traffic.html.

[7] 2019. Verizon and AWS announce 5G Edge computing partnership.
https://techcrunch.com/2019/12/03/verizon-and-aws-announce-5g-edge-
computing-partnership/.

[8] 2020. Apollo. https://apollo.auto/.
[9] 2020. INRIX Global Traffic Scorecard - Last-Mile Speed. https://inrix.com/

scorecard/.
[10] 2020. Microsoft partners with the industry to unlock new 5G scenarios with

Azure Edge Zones. https://azure.microsoft.com/en-us/blog/microsoft-partners-
with-the-industry-to-unlock-new-5g-scenarios-with-azure-edge-zones/.

[11] 2020. Snow and Ice Pose a Vexing Obstacle for Self-Driving Cars. https://www.
wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/.

[12] 2020. Unprotected Turns - The Right Way To Navigate Complex Intersections.
https://www.epermittest.com/drivers-education/unprotected-turns.

[13] 2021. Autoware. https://www.autoware.org/.
[14] 2021. Draco 3D Graphics Compression. https://google.github.io/draco/.
[15] 2021. EMP GitHub repository. https://github.com/Shawnxm/EMP.
[16] 2021. High performance INS for ADAS and autonomous vehicle testing. https:

//www.oxts.com/products/rt3000/.
[17] 2021. Lidar — Wikipedia. https://en.wikipedia.org/wiki/Lidar.
[18] 2021. Netgear nighthawk x10 ad7200 smart wifi router (r9000). https://www.

netgear.com/home/wifi/routers/ad7200-fastest-router/.
[19] 2021. TrustZone – Arm Developer. https://developer.arm.com/ip-products/

security-ip/trustzone.
[20] 2021. Velodyne LiDAR HDL-64E. https://www.velodynelidar.com/hdl-64e.html.
[21] 2021. Verizon Hyper Precise Location. https://thingspace.verizon.com/services/

hyper-precise-location/.
[22] Eduardo Arnold, Mehrdad Dianati, Robert de Temple, and Saber Fallah. 2020.

Cooperative perception for 3D object detection in driving scenarios using in-
frastructure sensors. IEEE Transactions on Intelligent Transportation Systems
(2020).

[23] Alireza Asvadi, Pedro Girao, Paulo Peixoto, and Urbano Nunes. 2016. 3D object
tracking using RGB and LIDAR data. In 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 1255–1260.

[24] Franz Aurenhammer. 1987. Power diagrams: properties, algorithms and applica-
tions. SIAM J. Comput. 16, 1 (1987), 78–96.

[25] Franz Aurenhammer. 1991. Voronoi diagrams—a survey of a fundamental geo-
metric data structure. ACM Computing Surveys (CSUR) 23, 3 (1991), 345–405.

[26] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. 2013. Voronoi diagrams and
Delaunay triangulations. World Scientific Publishing Company.

[27] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. 2019. Adversarial sensor
attack on lidar-based perception in autonomous driving. In Proceedings of the 2019
ACM SIGSAC conference on computer and communications security. 2267–2281.

[28] Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. 2019. F-cooper:
feature based cooperative perception for autonomous vehicle edge computing
system using 3D point clouds. In Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing. 88–100.

[29] Qi Chen, Sihai Tang, Qing Yang, and Song Fu. 2019. Cooper: Cooperative percep-
tion for connected autonomous vehicles based on 3d point clouds. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS). IEEE,
514–524.

[30] Junil Choi, Vutha Va, Nuria Gonzalez-Prelcic, Robert Daniels, Chandra R Bhat,
and Robert W Heath. 2016. Millimeter-wave vehicular communication to support
massive automotive sensing. IEEE Communications Magazine 54, 12 (2016), 160–
167.

[31] Tanmoy Das, Lu Chen, Rupam Kundu, Arjun Bakshi, Prasun Sinha, Kannan
Srinivasan, Gaurav Bansal, and Takayuki Shimizu. 2018. Corecast: Collision
resilient broadcasting in vehicular networks. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services. 217–229.

[32] Haowen Deng, Tolga Birdal, and Slobodan Ilic. 2018. Ppfnet: Global context
aware local features for robust 3d point matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 195–205.

[33] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

[34] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[35] Zan Gojcic, Caifa Zhou, Jan D Wegner, and Andreas Wieser. 2019. The perfect
match: 3d point cloud matching with smoothed densities. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 5545–5554.

[36] Shengtuo Hu, Qi Alfred Chen, Jiwon Joung, Can Carlak, Yiheng Feng, Z Morley
Mao, and Henry X Liu. 2020. Cvshield: Guarding sensor data in connected vehicle
with trusted execution environment. In Proceedings of the Second ACM Workshop
on Automotive and Aerial Vehicle Security. 1–4.

[37] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015.
Mobile Edge Computing—A Key Technology towards 5G. ETSI white paper 11,
11 (2015), 1–16.

[38] Braden Hurl, Krzysztof Czarnecki, and Steven Waslander. 2019. Precise synthetic
image and lidar (presil) dataset for autonomous vehicle perception. In 2019 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2522–2529.

[39] John B Kenney. 2011. Dedicated short-range communications (DSRC) standards
in the United States. Proc. IEEE 99, 7 (2011), 1162–1182.

[40] Swarun Kumar, Lixin Shi, Nabeel Ahmed, Stephanie Gil, Dina Katabi, and Daniela
Rus. 2012. Carspeak: a content-centric network for autonomous driving. ACM
SIGCOMM Computer Communication Review 42, 4 (2012), 259–270.

[41] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. 2019. PointPillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
12697–12705.

[42] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The quic transport protocol: Design and internet-scale deployment. In Proceedings
of the conference of the ACM special interest group on data communication. 183–
196.

[43] Jinsung Lee, Sungyong Lee, Jongyun Lee, Sandesh Dhawaskar Sathyanarayana,
Hyoyoung Lim, Jihoon Lee, Xiaoqing Zhu, Sangeeta Ramakrishnan, Dirk Grun-
wald, Kyunghan Lee, et al. 2020. PERCEIVE: deep learning-based cellular uplink
prediction using real-time scheduling patterns. In Proceedings of the 18th Interna-
tional Conference on Mobile Systems, Applications, and Services. 377–390.

[44] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim.
2020. GROOT: a real-time streaming system of high-fidelity volumetric videos.
In Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking. 1–14.

[45] Jianqiang Li, Genqiang Deng, Chengwen Luo, Qiuzhen Lin, Qiao Yan, and Zhong
Ming. 2016. A hybrid path planning method in unmanned air/ground vehicle
(UAV/UGV) cooperative systems. IEEE Transactions on Vehicular Technology 65,
12 (2016), 9585–9596.

[46] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md EHaque, Lingjia
Tang, and JasonMars. 2018. The architectural implications of autonomous driving:
Constraints and acceleration. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems. 751–766.

[47] Hansi Liu, Pengfei Ren, Shubham Jain, Mohannad Murad, Marco Gruteser, and
Fan Bai. 2019. FusionEye: Perception Sharing for Connected Vehicles and its
Bandwidth-Accuracy Trade-offs. In 2019 16th Annual IEEE International Confer-
ence on Sensing, Communication, and Networking (SECON). IEEE, 1–9.

[48] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[49] Martin Magnusson, Achim Lilienthal, and Tom Duckett. 2007. Scan registration
for autonomous mining vehicles using 3D-NDT. Journal of Field Robotics 24, 10
(2007), 803–827.

[50] Gaurang Naik, Biplav Choudhury, and Jung-Min Park. 2019. IEEE 802.11 bd &
5G NR V2X: Evolution of radio access technologies for V2X communications.
IEEE Access 7 (2019), 70169–70184.

[51] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A first look at commercial 5G performance on
smartphones. In Proceedings of The Web Conference 2020. 894–905.

[52] Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu,
Rostand AK Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, et al.
2020. Lumos5g: Mapping and predicting commercial mmwave 5g throughput. In
Proceedings of the ACM Internet Measurement Conference. 176–193.

[53] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,
Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Z Morley Mao,
et al. 2021. A Variegated Look at 5G in the Wild: Performance, Power, and QoE
Implications. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures, and
protocols for computer communication.

https://man7.org/linux/man-pages/man8/tc.8.html
https://nacto.org/docs/usdg/vehicle_stopping_distance_and_time_upenn.pdf
https://nacto.org/docs/usdg/vehicle_stopping_distance_and_time_upenn.pdf
https://www.wsdot.wa.gov/mapsdata/travel/pdf/Annual_Traffic_Report_2016.pdf
https://www.wsdot.wa.gov/mapsdata/travel/pdf/Annual_Traffic_Report_2016.pdf
https://zdnet.com/article/how-autonomous-vehicles-could-save-over-350k-lives-in-the-us-and-millions-worldwide/
https://zdnet.com/article/how-autonomous-vehicles-could-save-over-350k-lives-in-the-us-and-millions-worldwide/
https://news.microsoft.com/2019/11/26/att-integrating-5g-with-microsoft-cloud-to-enable-next-generation-solutions-on-the-edge/
https://news.microsoft.com/2019/11/26/att-integrating-5g-with-microsoft-cloud-to-enable-next-generation-solutions-on-the-edge/
https://phys.org/news/2018-02-autonomous-vehicles-traffic.html
https://phys.org/news/2018-02-autonomous-vehicles-traffic.html
https://techcrunch.com/2019/12/03/verizon-and-aws-announce-5g-edge-computing-partnership/
https://techcrunch.com/2019/12/03/verizon-and-aws-announce-5g-edge-computing-partnership/
https://apollo.auto/
https://inrix.com/scorecard/
https://inrix.com/scorecard/
https://azure.microsoft.com/en-us/blog/microsoft-partners-with-the-industry-to-unlock-new-5g-scenarios-with-azure-edge-zones/
https://azure.microsoft.com/en-us/blog/microsoft-partners-with-the-industry-to-unlock-new-5g-scenarios-with-azure-edge-zones/
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/
https://www.wired.com/story/snow-ice-pose-vexing-obstacle-self-driving-cars/
https://www.epermittest.com/drivers-education/unprotected-turns
https://www.autoware.org/
https://google.github.io/draco/
https://github.com/Shawnxm/EMP
https://www.oxts.com/products/rt3000/
https://www.oxts.com/products/rt3000/
https://en.wikipedia.org/wiki/Lidar
https://www.netgear.com/home/wifi/routers/ad7200-fastest-router/
https://www.netgear.com/home/wifi/routers/ad7200-fastest-router/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.velodynelidar.com/hdl-64e.html
https://thingspace.verizon.com/services/hyper-precise-location/
https://thingspace.verizon.com/services/hyper-precise-location/

ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Xumiao Zhang, et al.

[54] Cristina Olaverri-Monreal, Pedro Gomes, Ricardo Fernandes, Fausto Vieira, and
Michel Ferreira. 2010. The See-Through System: A VANET-enabled assistant
for overtaking maneuvers. In 2010 IEEE Intelligent Vehicles Symposium. IEEE,
123–128.

[55] Apostolos Papathanassiou and Alexey Khoryaev. 2017. Cellular V2X as the
essential enabler of superior global connected transportation services. IEEE 5G
Tech Focus 1, 2 (2017), 1–2.

[56] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. 2018.
AVR: Augmented vehicular reality. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 81–95.

[57] Andreas Rauch, Felix Klanner, Ralph Rasshofer, and Klaus Dietmayer. 2012. Car2x-
based perception in a high-level fusion architecture for cooperative perception
systems. In 2012 IEEE Intelligent Vehicles Symposium. IEEE, 270–275.

[58] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast point feature
histograms (FPFH) for 3D registration. In 2009 IEEE international conference on
robotics and automation. IEEE, 3212–3217.

[59] Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki, Rangaprasad Arun Sri-
vatsan, Simon Lucey, and Howie Choset. 2019. PCRNet: Point cloud registration
network using PointNet encoding. arXiv preprint arXiv:1908.07906 (2019).

[60] Mahadev Satyanarayanan. 2017. The Emergence of Edge Computing. Computer
50, 1 (2017), 30–39.

[61] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. 2019. Pointrcnn: 3d ob-
ject proposal generation and detection from point cloud. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 770–779.

[62] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE internet of things journal 3, 5 (2016),
637–646.

[63] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. 2020. Towards
robust lidar-based perception in autonomous driving: General black-box adver-
sarial sensor attack and countermeasures. In 29th {USENIX} Security Symposium
({USENIX} Security 20). 877–894.

[64] James Tu, Tsunhsuan Wang, Jingkang Wang, Sivabalan Manivasagam, Mengye
Ren, and Raquel Urtasun. 2021. Adversarial Attacks On Multi-Agent Communi-
cation. arXiv preprint arXiv:2101.06560 (2021).

[65] JunjueWang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan
Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan. 2018. Bandwidth-efficient
live video analytics for drones via edge computing. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 159–173.

[66] Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan
Zeng, and Raquel Urtasun. 2020. V2vnet: Vehicle-to-vehicle communication

for joint perception and prediction. In European Conference on Computer Vision.
Springer, 605–621.

[67] IEEE 1609 WG. 2016. IEEE Standard for Wireless Access in Vehicular
Environments–Security Services for Applications and Management Messages.
IEEE Std 1609.2-2016 (Revision of IEEE Std 1609.2-2013) (2016).

[68] Pengxiang Wu, Siheng Chen, and Dimitris N Metaxas. 2020. MotionNet: Joint
Perception and Motion Prediction for Autonomous Driving Based on Bird’s Eye
View Maps. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 11385–11395.

[69] Xiufeng Xie and Kyu-Han Kim. 2019. Source Compression with Bounded DNN
Perception Loss for IoT Edge Computer Vision. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[70] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,
Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding operational 5g: A
first measurement study on its coverage, performance and energy consumption.
In Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 479–494.

[71] Zhigang Xu, Xiaochi Li, Xiangmo Zhao, Michael H Zhang, and Zhongren Wang.
2017. DSRC versus 4G-LTE for connected vehicle applications: A study on field
experiments of vehicular communication performance. Journal of Advanced
Transportation 2017 (2017).

[72] Huacheng Zeng, Hossein Pirayesh, Pedram Kheirkhah Sangdeh, and Adnan
Quadri. 2021. VehCom: Delay-Guaranteed Message Broadcast for Large-Scale
Vehicular Networks. IEEE Transactions on Wireless Communications (2021).

[73] Yiming Zeng, Yu Hu, Shice Liu, Jing Ye, Yinhe Han, Xiaowei Li, and Ninghui Sun.
2018. Rt3d: Real-time 3-d vehicle detection in lidar point cloud for autonomous
driving. IEEE Robotics and Automation Letters 3, 4 (2018), 3434–3440.

[74] Wenwei Zhang, Hui Zhou, Shuyang Sun, Zhe Wang, Jianping Shi, and
Chen Change Loy. 2019. Robust multi-modality multi-object tracking. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 2365–2374.

[75] Pengyuan Zhou, Tristan Braud, Aleksandr Zavodovski, Zhi Liu, Xianfu Chen,
Pan Hui, and Jussi Kangasharju. 2020. Edge-facilitated Augmented Vision in
Vehicle-to-Everything Networks. (2020).

[76] Xiao Zhu, Jiachen Sun, Xumiao Zhang, Y Ethan Guo, Feng Qian, and Z Morley
Mao. 2020. MPBond: efficient network-level collaboration among personal mobile
devices. In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services. 364–376.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Benefit of Sensor Data Sharing
	2.2 Need for an Edge-assisted System
	2.3 Challenges

	3 System Design
	3.1 Edge-assisted Perception Architecture
	3.2 Edge-assisted Point Cloud Partitioning
	3.3 Upload Scheduling
	3.4 View Merging
	3.5 Performance optimizations

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup and Methodology
	5.2 End-to-end Performance
	5.3 Perception Enhancement
	5.4 Case Study: Road Hazards Avoidance
	5.5 Overhead Breakdown
	5.6 Large-scale Simulation

	6 Related Work
	7 Discussion
	8 Concluding Remarks
	Acknowledgments
	References

