Revisiting Network Energy Efficiency of Mobile Apps:
Performance in the Wild

Sanae Rosen, Ashkan Nikravesh, Yihua Guo, Z. Morley Mao, Feng Qianf, Subhabrata Sen*
University of Michigan, fIndiana University, *AT&T Labs — Research
{sanae,ashnik,yhguo,zmao}@umich.edu,
fenggian@indiana.edu, sen@research.att.com

ABSTRACT

Energy consumption due to network traffic on mobile devices con-
tinues to be a significant concern. We examine a range of excessive
energy consumption problems caused by background network traf-
fic through a two-year user study, and also validate these findings
through in-lab testing of the most recent versions of major mobile
apps. We discover a new energy consumption problem where fore-
ground network traffic persists after switching from the foreground
to the background, leading to unnecessary energy and data drain.
Furthermore, while we find some apps have taken steps to improve
the energy impact of periodic background traffic, energy consump-
tion differences of up to an order of magnitude exist between apps
with near-identical functionality. Finally, by examining how apps
are used in the wild, we find that some apps continue to generate
unneeded traffic for days when the app is not being used, and in
some cases this wasted traffic is responsible for a majority of the
app’s network energy overhead. We propose that these persistent,
widespread and varied sources of excessive energy consumption in
popular apps should be addressed through new app management
tools that tailor network activity to user interaction patterns.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: wireless communi-
cation; C.4 [Performance of Systems]: measurement techniques,
performance attributes

Keywords

4G LTE; smartphones; cellular network performance; mobile en-
ergy consumption

1. INTRODUCTION

Fueled by powerful mobile devices and ubiquitous cellular data
network access, smartphone applications (apps) have become an
indispensable part of modern life. There have been more than 100
billion mobile app downloads from the Apple App Store as of June
2015 [2]. However, battery life remains a scarce resource. Over the
past 15 years, CPU performance has improved 250x while Li-Ion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

IMC’15, October 28-30, 2015, Tokyo, Japan.

@ 2015 ACM. ISBN 978-1-4503-3848-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2815675.2815713.

339

battery capacity has only doubled [11]. It is known that inefficient
app design can lead to excessive battery drain. In particular, certain
app traffic patterns, like periodic requests, interact poorly with the
power-hungry cellular interface [22, 8, 21]. Despite these known
problems, however, apps continue to drain user batteries.

In this paper, we measure the prevalence of excessive mobile
app network energy consumption by analyzing data collected from
20 real smartphone users and 342 unique apps over a period of 22
months. This unique long-term dataset allows us to examine the
smartphone and app ecosystem in the wild. We focus on the im-
pact of background traffic — traffic sent when the app has no Ul
element visible — which makes up 84% of the total network en-
ergy consumed across all users. Periodic background traffic is often
power-hungry [21], but apps have flexibility in scheduling back-
ground traffic due to the absence of real-time user interaction, and
can use strategies such as bundling traffic or reducing update fre-
quencies to reduce energy consumption. We examine global trends
across all apps and determine that energy overconsumption remains
a pervasive problem, despite many apps taking steps to reduce their
energy overhead. Furthermore, some of this traffic is likely unin-
tentional and not useful to the end user.

Our key findings are as follows:

e We identify a significant new source of excessive background
energy consumption (§4.1), where network traffic persists after an
app transitions from the foreground to the background, sometimes
for as long as a day. 30% of background traffic from one major
browser is caused by this phenomenon. Over 80% of apps transmit
more than 80% of their background data in the first minute after the
app is sent to a background state, in total across all user devices in
our study.

e We show that there is high variation in the energy overhead of
apps that rely on frequent background traffic, even between apps
with similar background functionality (§4.2). By examining case
studies of apps that require background updates, we find that the en-
ergy consumed by similar apps can vary by up to an order of mag-
nitude. Furthermore, we find that apps studied in previous work
have often improved their energy overheads but that other new apps
continue to make the same mistakes. There is substantial room for
improvement by adopting energy-efficient design approaches, such
as batching background updates.

e By examining apps as they are used in the wild, we find that
many apps are frequently not used for days, including apps with
substantial background traffic. We demonstrate that the network
energy overhead of these apps can be reduced by up to a half in
some cases if the OS were to proactively terminate long-running
apps after three days of inactivity (§5). More generally, we empha-
size the need for apps to be aware of their foreground/background

state when scheduling network requests, and our findings suggest
that new suggestions for managing background traffic are likely to
be highly valuable.

2. RELATED WORK

Mobile network and app performance is an area that has received
a great deal of interest, and prior work has examined many as-
pects of this problem, including papers on TCP-cellular interac-
tions [17], accurate active performance measurements [14], app
usage [27], wireless data drain [23], comparing cellular and Wi-
Fi performance [25], application performance [19], energy effi-
ciency when downloading and rendering web content in the fore-
ground [26], and the impact of user behavior [13]. We focus on
background network energy consumption specifically, specifically
where it occurs in the wild.

Prior work has also examined various aspects of background net-
work activity as well, which or work builds upon. Aucinas et al.
examined smartphone energy efficiency through in-lab experiments
with a number of major apps which maintain a continuous online
presence [8]. Work by Huang et al. [18] examined traffic sent when
the screen is off (note that background traffic can also occur when
the screen is on, including from minimized apps). Other work has
examined periodic transfers [21], and the disproportionate impact
of small background requests [12, 9]. Tamer [20] demonstrates it
is possible to modify the energy impact of app wakeups by inter-
posing on wakeup events to better manage them. Our work is com-
plementary, examining a broad set of apps and focusing on their
behavior in the wild over a long time period, which enabled us to
uncover new energy drain problems as well as understand how old
problems have evolved.

There has also been a great deal of interest in the impact of back-
ground traffic in work developed concurrently with this paper. In
particular, Google announced Android M after the submission of
this paper, which introduces Doze and App Standby, which should
decrease the energy impact of the excessive background traffic we
uncovered in this paper [15, 5]. Other concurrent work includes Za-
pDroid [24], which automatically isolates or disables infrequently-
used apps, a solution which our findings suggest would be highly
valuable. Work by Chen et al [10] presents a large-scale user study
of how users use their phones and how that interacts with app
battery consumption. Their study is complementary, covering all
sources of energy consumption and trends across categories of de-
vices, whereas we focus on examining the role of background net-
work transfers specifically in depth and exploring the root causes
of this excessive background consumption.

3. DATA COLLECTION AND OVERVIEW

We first summarize our measurement dataset. We recruited 20
students! at the University of Michigan and provided each of them
with a Samsung Galaxy S III smartphone with an unlimited LTE
data plan. We pre-installed custom data collection software on each
phone that transparently collects complete network traces. These
traces include packet payloads (note we are unable to decrypt SSL
traffic), user input events, and packet-process mappings. All col-
lected data was kept strictly confidential. The data was collected
over a period of 623 days (December 2012 to November 2014) with
an overall raw data size of 125 GB, including cellular and WiFi
packet traces and user input and context data. We focus primar-
ily on cellular traffic in this study as it consumes far more energy
than WiFi. Processes are labeled with names derived from the app

"This user trial was approved by University of Michigan IRB-
HSBS #HUMO00044666.

340

20
£
22 15
Ea
=8
© ° 10
oRo)
ovn
=}
Ec 5
z
0 A, DO A, SO &7 4 A
R L AR S SN X s
R ORI B Y 2 oy KM RS RS S AN
0,80, 0% 8, B L8, Uy 4, S, T
°o§’L@@ %t %, 4 ‘9/4& 0T % % %
RO ke % - % $‘0’7@/

Figure 1: Number of times each app appears in a user’s top 10
apps, ranked by total data consumption.

25

Energy

Total consumed (MJ)

Total consumed (GB)

Figure 2: Highest cellular data and network energy usage by
app across all users.

package name, allowing us to straightforwardly map packets to the
originating apps. In a few cases, requests are delegated to some
system services such as the Media Server. We label this traffic ac-
cording to the service from which it originated rather than the app
which triggered it, as mapping back to the originating app in this
specific case cannot always be done with high accuracy.

3.1 Measurement Data Overview

We next give an overview of this 22 month dataset before focus-
ing on specific apps.

App Popularity and Diversity. Users differ greatly in the apps
they use. Figure 1 shows apps that appear in at least two users’ top-
10 lists (by total data consumption). While a handful of apps are
popular among all users (e.g., the built-in media player, Facebook,
and Google Play), users’ top-ten lists otherwise exhibit significant
diversity. Similar diversity of app usage was observed in previous
work [13, 27].

Data- and Energy-Hungry apps. First, we examine trends in
applications that consume a large amount of energy or data. We use
a standard power model for LTE [16, 22] supported by measure-

0.8

0.6

04

0.2 r

Fraction in each state

A 4 2 Y
%, C);/b B s, od’/é % %%‘9 % %, % °c>cg@’°o,',o’7)§> %//)&@o
‘///’b@’lf b O, % © o %, B V8%
6, % ” R Uy)
%, % %
xS‘@/_ (o3 S
foreground = perceptibl background &sEz2

-

visible mmmzmman

service

Figure 3: Fraction of energy in each foreground/background
state, based on process codes assigned by the Android operating
system.

ments gathered with a Monsoon power monitor to compute radio
energy consumption®.

We summarize the top energy and data consumers in Figure 2.
Note the top energy consumers and the top data consumers are
not necessarily the same. For example, the default email app con-
sumes network energy disproportionate to its data usage, whereas
the built-in media server consumes significantly less energy per
byte. In cellular networks, the radio remains active for several sec-
onds after a data transmission, consuming additional energy called
tail energy [9]. Since tail energy consumption is dependent on the
number of traffic bursts and the time between them rather than the
amount of data sent, apps sending data intermittently incur a dis-
proportionate amount of energy.

As we evaluate the impact of each app in the wild, rather than
the impact of apps in isolation, we assign any tail energy to the last
packet sent during the tail period to avoid double-counting energy
when there are multiple concurrent flows. In this way, the total
cellular network energy consumed by each device is the sum of the
energy assigned to each app.

Longitudinal Trends. We examined trends in network usage
and energy consumption over time. However, the diversity of apps,
the smaller user set, users’ propensity to change the apps they use
over time, and changes in user behavior, obscured the overall im-
pact of app design changes over time or any trends towards more
energy efficiency. Background energy fluctuated by up to 60%
from week to week throughout the study. Examining specific apps,
we did determine that some apps have become more energy-efficient
due to adjusting the inter-packet intervals of background traffic,
which we discuss in more detail in §4.2.

4. BACKGROUND ENERGY CONSUMPTION

Energy consumption in the background makes up 84% of the
total network energy, and is thus the focus of this study. An app
running in the background may run until either the user kills it
manually or Android does (such as when more memory is needed).
Many apps sync with a server, receive push notifications, or run up-
dates in the background. Since no user interaction is present, these
processes have much more freedom to determine when they trans-
mit data than when running in the foreground, where they may be

In the rest of the paper, “energy” refers to the network energy
unless otherwise noted.

341

subject to time constraints to meet user expectations. Furthermore,
there is often a tradeoff between ensuring updates are timely and
avoiding wasted background updates the user never looks at. For
this reason, apps vary greatly in the amount of energy that they con-
sume in the background, even when providing similar functional-
ity. In this section, we analyze the resource efficiency of app back-
ground network activities through detailed case studies, identifying
large disparities between apps due to diverse design approaches.
We also identify several cases where large numbers of network re-
quests are sent unnecessarily, verified through in-lab testing.

Our definition of “background" traffic is based on five main pro-
cess states defined by Android [6]: foreground, where the process
is responsible for the main UI; visible, where the process is respon-
sible for a secondary Ul element; perceptible, where a process not
visible to the user may still affect the user experience (e.g. playing
music); service, where a background process should not be termi-
nated if possible; and background, where the OS will kill the app if
system memory is low. We summarize the cellular energy in each
of these five states for twelve data- or energy-hungry apps in Fig-
ure 3. We refer to the first two categories as “foreground" processes
and the last three as “background" processes for the remainder of
the paper. Note that for all but three of these apps, background en-
ergy of some sort contributes more than half of the overall network
energy consumed by the app. Across all apps, 84% of cellular net-
work energy is consumed in a background state. This included only
8% of energy consumed by “perceptible traffic”, as only a few users
used streaming services and it is apparent from Figure 3 that not all
apps made use of this feature when expected. 32% was consumed
by “service" traffic.

We focus on two main categories of background transfers. In §4.1,
we examine background traffic that occurs when an app switches
from the foreground to the background. In §4.2 we investigate traf-
fic initiated automatically in the background, such as that for peri-
odic updates, push notifications, or music streaming. We supple-
ment our longitudinal traces with in-lab measurements to validate
our findings and determine the context and purpose of the traffic in
our traces.

4.1 Foreground Traffic not Terminated

While it is expected that some apps will transmit data in the back-
ground, such as when checking email, updating a social networking
app or streaming music, other apps such as browsers are expected to
mainly transmit data when the app is in the foreground. However,
we find some such apps appear to inadvertently transmit data in
the background. As shown in Figure 3, about 30% of the Chrome
browser’s network energy is consumed while the app is running
in the background. To understand why, we examine a representa-
tive trace from the user study dataset in Figure 4. We have high-
lighted the time period after Chrome switches to the background in
grey. During this time packets continue to be sent for several min-
utes: note that some websites also generate periodic background
requests.

To validate our hypothesis that Chrome allows web pages to con-
tinue sending periodic traffic after the app is minimized, we first
created a custom web page that only sends XMLHttpRequest asyn-
chronously to a server every second. We found that the Chrome app
allows this web page to transfer data when tabs are not selected and
thus invisible to the user; when the screen is off; and even when
the app has been sent to the background. To further confirm this
problem exists in the wild, we also opened several web pages, min-
imized Chrome, and recorded the resulting network traces. In gen-
eral, any web page which automatically refreshes content has this
problem, including some ad and analytics content. In one partic-

1500

¢
:0:000000000000000000

FG BG
’000000000000 L R 2R 2% 28 2B 2% 4
i i
) b3
< 1000 [ee ¢
& ¥
= b
il .
S 3 .
z 500 O
E ’ st et e, st et

* :0“0“0

Bobumwe wnsssee e
100

0

0 50 150 200 250

Elapsed Time (s)

300 350 400

Figure 4: Chrome allows webpages to continue sending and
receiving data in the background.

L
[
O
1 10 100 1000 10000 100000
Time (s)
Figure 5: Duration for which traffic continues to be

sent/received after the app is sent to the background. Each data
point represents one transition to the background.

ularly egregious case, a popular local transit information webpage
sends background requests roughly every 2 seconds, indefinitely,
keeping the cellular radio alive and draining the battery until the
app is killed or the tab is closed.

To quantify the severity of the problem on a larger scale, we
plot the distribution of the length of time during which Chrome
continues to transmit data after being sent to the background in
Figure 5. This includes flows that were started when Chrome was in
the foreground but persist after Chrome is sent to the background.
Each data point represents one instance of the app being minimized.
In some cases background traffic flows persist for more than a day!
While updating pages in the background may have some benefit to
users who then revisit that page, in most cases continuing to send
data for so long is likely not intended or useful behavior. Note that
our data points do not include cases where the app remains in the
foreground but a tab other than the one being viewed is sending
data, and so the scope of the problem is likely even bigger.

We compared this behavior against that exhibited by Firefox and
the default Android browser. Neither allow data to be sent when the
app is in the background or the screen is off, and Firefox blocks data
from being sent by inactive tabs. To estimate the prevalence of this
problem among other apps, we examine the data sent by apps in the
background as a function of the time since the app was last in the
foreground. As we show in Figure 6, the more recently the app was

342

20000

15000 |

10000

Data (MB)

5000 r

0

0 10 20 30 40 50 60 70 80 90 100 110 120

Elapsed Time in BG (min)

Figure 6: Total background data sent by all apps, as a function
of the time since switching from a foreground state. Note the
periodic spikes at 5 and 10 minute intervals, the large amount
of traffic in the first minute, and the long tail of persisting, con-
tinuous flows.

sent to the background, the more traffic is sent, with substantially
more traffic being sent in the first few minutes than any other time.
Some of this traffic is periodic: there are peaks at 10 minute and 5
minute intervals, which are common time intervals for intentional
periodic background traffic. However, there is also a non-periodic
pattern, where the overall volume of background traffic falls off
rapidly in the first few minutes. To estimate the prevalence of this
problem, we look for apps where 80% of the background traffic is
sent within 60 seconds of the app going to the background than any
other time. 84% of apps meet this criteria.

There are some apps, like Dropbox, which may have valid rea-
sons to upload content immediately after the app is closed, but in
many other cases transmitting a large amount of traffic after the
app is closed is undesirable. Developers of apps which send a
large amount of data immediately after sending the app to the back-
ground should determine if this is expected or necessary behavior.

4.2 Transfers Initiated in the Background

We next evaluate data transfers that intentionally occur in the
background. Even though these transfers may be beneficial to the
user, depending on the frequency of user interaction with the app,
the overhead of these transfers can be disproportionate. We ex-
amine a number of energy-hungry apps in depth, as well as some
energy-conserving apps with similar functionality. Finally, we study
a number of apps examined in previous work to evaluate how back-
ground update energy efficiency has improved over time. The en-
ergy efficiency of background transfers are primarily determined
by their frequency, with small updates incurring a disproportionate
amount of tail energy. Large transfers are known to be more effi-
cient, as they make better use of available bandwidth [17]. As a
result, apps with similar functionality can have very different over-
heads depending on the traffic pattern used.

We summarize key findings in Table 4.2, focusing on five classes
of apps that are responsible for a substantial fraction of background
updates in the user study: social media apps, widgets, music stream-
ing, podcasts and services that provide background updates. We
break down the energy overhead into average per-day energy con-
sumption and average per-flow energy consumption. Note that it is
not always the case that there is only one flow per periodic update,
nor that for periodic updates that the updates necessarily continue
for the entire day, as background applications may be forced to
close for a variety of reasons.

First, we examine social media apps. These apps generally ask
for updates from a central server periodically, regardless of user ac-
tivity, and can thus potentially consume a large amount of energy.

Frequent, nearly-empty requests

Previously every 20-60s [21] in 2012
Rarely actively used but installed by default

Library; period varies by app
Decreased to a few hours near the end

Weibo 0.3 190 5-10 min
Twitter 220 11 17 0.65 1h

Facebook 930 14 1.1 1.8 Smin=1h
Plus 8.9 1h

Samsung Push 2.2 15 min to 15h
Urbanairship 2000 310 1.9 163 5-30 min
Maps 190 21 55 0.38 20-30 min
Gmail 410 20 10 2

30 min = varying

30 min in 2012 [21]; updates appear to become
discontinuous.

Go Weather widget 300 12 1.6 7.5 5 min
Go Weather 220 2.8 5.6 0.5
Accuweather 1500 51 3.2 16
Accuweather widget 33 1.7 18 0.094 ~3h

5 min = 40 min
7 min but high variation

Switched push notification approaches

More efficient than the app

5 min = 40 min
1 min = 2h

Previously every 1 min [21] in 2012

Spotify 310 50 220 0.23

Pandora 35 3.9 45 0.087
Pocketcasts 36 43 2200 0.002
Podcastaddict 92 2.9 750 0.004

~2h average
12 min average

0.4 mJ per minute running.
3.7 mJ per minute running.

Table 1: Case studies. Energy per flow and per day are averages over time, and one flow may not correspond to one periodic update.
These can vary as apps change over time or as background apps are forced to close, and energy consumption values vary by device

and carrier.

Apps with small, periodic background traffic (such as Weibo) have
very high energy overhead and send little data, whereas apps with
similar functionality (such as Twitter) have a much smaller foot-
print. Facebook, which had previously been identified as a heavy
energy user, improved its energy efficiency over the course of our
study by decreasing its background update frequency from 5 min-
utes to 1 hour, which is much longer than the 1-minute periodicity
measured in 2012 [21].

Applications oriented towards providing periodic background up-
dates, such as certain push notification services, may consume a lot
of energy compared to the amount of data they send. In an in-lab
experiment, one third-party library transmitted nearly empty HTTP
requests every five minutes for hours, but only provided one user-
visible notification during this time. Another example is Google
Maps, which by default provides a background location service
which continuously collects anonymous location data. This ser-
vice consumed up to 90% of the app’s total energy usage at the
beginning of the study, but the frequency decreased to once every
few hours by the end. GMail also leverages periodic updates using
push notifications: it has actually increased its inter-update inter-
vals, but updates appear to no longer be periodic, arriving only on
demand, leading to an overall low degree of energy consumption.

Widgets are a class of apps that appear on the home screen and
have little or no direct user interaction. In many cases their func-
tionality revolves around periodic background updates (such as to
keep the user updated on the latest weather). There is a tradeoff
between timeliness of information and energy consumption. How-
ever, even just examining weather widgets, the difference in update
frequency between two apps (and the resulting energy overhead)
varies by an order of magnitude. Note also that the Accuweather
app is far less efficient than the corresponding widget, as the widget

343

updates itself less frequently. Widgets and apps made by the same
developers may have very different behavior.

We also examined several multimedia streaming apps. Music
streaming apps were not as popular in our dataset as in prior work,
but their update frequency was generally much lower than before [21],
having apparently moved away from a continuous streaming model
to larger batch downloads, although particularly long update fre-
quencies may reflect users who only intermittently use these apps.
Podcasts were far more popular, and we compare two popular apps.
Podcastaddict consumed more energy overall, as Pocketcasts down-
loads an entire podcast in one chunk whereas Podcastaddict down-
loads smaller chunks as needed. While the latter approach may
reduce data consumption if users don’t finish listening to a podcast,
it consumes more energy.

S. WHAT-IF ANALYSIS: PREEMPTIVELY
KILLING IDLE BACKGROUND APPS

In §4 we determined that background traffic has a substantial im-
pact on energy consumption, and in some cases much of this traffic
is from apps users are not frequently using. We propose having the
OS kill background apps that have remained in the background for
several days. A new permission or whitelist could address corner
cases where apps (such as widgets) have a legitimate need to run in
the background for an extended period of time, and OS feedback on
background energy consumption could disincentivize unnecessary
use of this functionality. In fact, the preview of Doze in Android M,
a project announced after our submission, appears to add such func-
tionality [15, 5]. We have identified a number of apps where this
type of functionality has the potential to greatly reduce background
traffic, although we do not evaluate Doze itself in this paper.

To evaluate the effectiveness of this approach, we simulate re-
stricting background traffic after three days, and highlight six apps

A: % days with only 42
background traffic
B: Max consecutive 40
background days
C: Disable after 3 days: | 14
avg.% energy reduction

39 | 6.2 | 22 | 45

Table 2: Example trends in background traffic when apps
are infrequently used, and simulated energy savings from sup-
pressing this traffic.

in Table 5. In row A we show the fraction of days where we
see only background traffic from the app, and in row B we show
the maximum number of such days that we see occurring consec-
utively, considering only time periods where there is foreground
traffic at the beginning and end of the time period. These apps
are rarely used by certain users, creating energy savings oppor-
tunities if the apps were to be preemptively killed. Row C sum-
marizes the average savings per user of killing the app after three
consecutive days. Note in particular that Weibo, which we showed
was very energy-hungry, can have its network energy consumption
more than halved this way.

Due to the large number of apps users in our study had installed
on their phone, the impact of each app individually on a user’s
total network consumption was small. Thus, this would have re-
sulted in total network energy savings of less than 1% on average
overall. However, we found that for the users running Weibo, dis-
abling Weibo alone after just three days of inactivity could have
reduced their total network energy consumption by 16% on those
days. Overall, how much users benefit from this functionality de-
pends greatly on the set of apps involved and on user behavior, so it
is hard to draw definite conclusions on the average benefits of our
proposed system for or other systems such as Doze, but such an ap-
proach seems especially promising in protecting users from poorly
optimized or buggy apps, and reducing the worst-case energy con-
sumption generally.

6. CONCLUDING REMARKS AND
RECOMMENDATIONS

Excessive energy consumption by mobile apps has long been
known to be a significant problem, and background traffic contin-
ues to be a major battery drain. We have examined a significant but
previously unstudied phenomenon where network traffic initiated
in the foreground persists unnecessarily when the app is sent to the
background. Furthermore, we have shown that improvements for
known inefficiencies have not been universal, even for profession-
ally developed apps with a large user base. While we recommend
that app developers continue to carefully consider the cost of the
traffic they send, more is needed to improve the situation, espe-
cially for background traffic.

We make several recommendations. First, apps should be de-
signed to explicitly account for their foreground/ background state
and adjust network transfers accordingly. Most crucially, apps should
ensure network transfers are terminated when the app is minimized
where possible. In §5 we demonstrate that more aggressively killing
apps that run in the background for days could greatly reduce the

344

energy impact of infrequently used apps. Since submitting this pa-
per, Google announced Android M, where all background activity
is disabled when the device is idle, and users are able to manually
specify exemptions for specific apps. Our findings suggest this is
likely a very positive step towards improving battery life. Similar
tools to manage other aspects of network content overconsumption
would also be valuable, such as to terminate flows meant to only
occur in the foreground.

Finally, the impact of periodic background transfers can also be
reduced in many cases. We have seen that some of the improve-
ments described in prior work, such as batching requests, have been
implemented with positive effect [18, 21], but background data
continues to have a large relative overhead. As proposed in prior
work, app developers should continue to batch traffic to minimize
the frequency of background updates, as well as tailor updates to
reflect the frequency with which useful, new data is provided. Our
findings also emphasize the importance of previously proposed ap-
proaches to reducing the energy consumption of background traffic
at the OS level, such as by providing explicit OS support for pe-
riodic updates or by using radio-layer energy saving features such
as fast dormancy [7]. Even if some apps improve energy consump-
tion, new apps will likely emerge that make the same mistakes.

In this paper, we have focused on background energy issues on
Android. Other systems take different approaches: 10S, for in-
stance, has the OS manage background tasks for applications, re-
stricting the potential impact of suboptimal app designs [1]. Al-
though we have not evaluated these systems, we can speculate as
to how our findings might apply to these systems. OS manage-
ment allows transfers to be batched, providing opportunities for
energy consumption optimization. However, some of their design
approaches and guidelines may suggest scheduling approaches in-
consistent with our findings. For instance, prioritizing apps who
download a small amount of data in the background quickly may
incentivize the wrong behavior. Windows Phones also put restric-
tions on background apps [3], restricting resource-intensive tasks
to WiFi and limiting the frequency with which background apps
can run, but there have still been consumer reports of specific apps
draining the battery when running in the background [4]. Overall,
there is a tradeoff between developer flexibility and the potential
for excessive energy consumption; we leave examining the energy
impact of these alternate approaches to future work.

7. ACKNOWLEDGEMENTS

We would like to thank our anonymous reviewers as well as
Erich Nahum, our shepherd, for their valuable comments. This
research was supported in part by NSF under CNS-1059372 and
CNS-1345226, as well as by an NSERC Canada PGS D scholar-
ship.

8. REFERENCES

[1] App Programming Guide for iOS — Background Execution.
https:
//developer.apple.com/library/prerelease/ios/documentation/
iPhone/Conceptual/iPhoneOSProgrammingGuide/
BackgroundExecution/BackgroundExecution.html.

[2] Apple’s app store has passed 100 billion app downloads.
http://www.theverge.com/2015/6/8/8739611/apple-wwdc-
2015-stats-update.

[3] Background agents for Windows Phone 8.
https://msdn.microsoft.com/en-
us/library/windows/apps/Hh202942(v=VS.105).aspx.

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

[12]

[13]

[14]

[15]

[16]

Conserve windows phone battery life by managing
background apps. http://www.windowscentral.com/conserve-
windows-phone-battery-life-managing-background-apps.
Developer preview - power-saving optimizations. https:
/ldeveloper.android.com/preview/features/power-mgmt.html.
ActivityManager.Running AppProcessInfo documentation.
https://developer.android.com/reference/android/app/
ActivityManager.Running AppProcessInfo.html.

P. K. Athivarapu, R. Bhagwan, S. Guha, V. Navda,

R. Ramjee, D. Arora, V. N. Padmanabhan, and G. Varghese.
RadioJockey: Mining Program Execution to Optimize
Cellular Radio Usage. In Proc. ACM MobiCom, 2012.

A. Aucinas, N. Vallina-Rodriguez, Y. Grunenberger,

V. Erramilli, K. Papagiannaki, J. Crowcroft, and

D. Wetherall. Staying Online while Mobile: The Hidden
Costs. In CoNEXT, 2013.

N. Balasubramanian, A. Balasubramanian, and

A. Venkataramani. Energy Consumption in Mobile Phones:
A Measurement Study and Implications for Network
Applications. In Proc. ACM IMC, 2009.

X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and

R. Vannithamby. Smartphone energy drain in the wild:
Analysis and implications. In Proc. Sigmetrics, 2015.

E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,

S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
Smartphones Last Longer with Code Offload. In Proc. ACM
MobiSys, 2010.

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and
D. Estrin. A First Look at Traffic on Smartphones. In Proc.
ACM IMC, 2010.

H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos,

R. Govindan, and D. Estrin. Diversity in Smartphone Usage.
In Proc. ACM MobiSys, 2010.

A. Gember, A. Akella, J. Pang, A. Varshavsky, and

R. Caceres. Obtaining In-Context Measurements of Cellular
Network Performance. In Proc. ACM IMC, 2012.

R. Holly. Checking out Doze and App standby on the
Android M Developer Preview.
http://www.androidcentral.com/checking-out-doze-android-
m-developer-preview.

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. A Close Examination of Performance and

345

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Power Characteristics of 4G LTE Networks. In Proc. ACM
MobiSys, 2012.

J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,

S. Sen, and O. Spatscheck. An In-Depth Study of LTE:
Effect of Network Protocol and Application Behavior on
Performance. In ACM SIGCOMM Computer Communication
Review, volume 43, 2013.

J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck.
Screen-off Traffic Characterization and Optimization in
3G/4G Networks. In Proc. ACM IMC, 2012.

J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and

P. Bahl. Anatomizing Application Performance Differences
on Smartphones. In Proc. ACM MobiSys, 2010.

M. Martins, J. Cappos, and R. Fonseca. Selectively Taming
Background Android Apps to Improve Battery Lifetime. In
Proc. Usenix ATC, 2015.

F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao,

S. Sen, and O. Spatscheck. Periodic Transfers in Mobile

Applications: Network-wide Origin, Impact, and
Optimization. In Proceedings of the 21st international

conference on World Wide Web, pages 51-60, 2012.

F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and

O. Spatscheck. Profiling Resource Usage for Mobile
Applications: a Cross-layer Approach. In Proc. ACM
MobiSys, 2011.

A. A. Sani, Z. Tan, P. Washington, M. Chen, S. Agarwal,
L. Zhong, and M. Zhang. The Wireless Data Drain of Users,
Apps, & Platforms. ACM SIGMOBILE Mobile Computing
and Communications Review, 17(4), 2013.

L. Singh, S. V. Krishnamurthy, H. V. Madhyastha, and

I. Neamtiu. ZapDroid: Managing Infrequently Used
Applications on Smartphones. In Proc. UbiComp, 2015.
J. Sommers and P. Barford. Cell vs. WiFi: On the
Performance of Metro Area Mobile Connections. In Proc.
ACM IMC, 2012.

N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and
J. P. Singh. Who Killed my Battery?: Analyzing Mobile
Browser Energy Consumption. In Proceedings of the 21st
international conference on World Wide Web, 2012.

Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and

S. Venkataraman. Identifying Diverse Usage Behaviors of
Smartphone Apps. In Proc. ACM IMC, 2011.

