IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

1521

Aging or Glitching? What Leads to Poor Android
Responsiveness and What Can We Do About It?

Hao Lin"Y, Student Member, IEEE, Cai Liu, Zhenhua Li

Senior Member, IEEE, Feng Qian, Senior Member, IEEE,

Mingliang Li, Ping Xiong, and Yunhao Liu, Fellow, IEEE

Abstract—Almost all Android users have ever experienced poor
responsiveness, including the common frame dropping events—
slow rendering (SR) and frozen frames (FF), as well as the un-
common Application Not Responding (ANR) and System Not Re-
sponding (SNR) that directly disrupt user experience. This work
takes two complementary approaches, controlled benchmarking
and in-the-wild crowdsourcing, to comprehensively understand
their prevalence, characteristics, and root causes, which turn out
to be significantly different from common understandings and
prior studies. We find that SR, FF, ANR, and SNR all occur
prevalently on all the studied hardware models of Android phones,
and better hardware does not seem to relieve ANR/SNR. Most
surprisingly, they are oftentimes ascribed to defective software
design that incurs substantial resource overuse—lightweight apps
can experience severe SR/FF events due to redundant Ul rendering,
and the most ANR/SNR events stem from Android’s aggressive
implementation of write amplification mitigation. In fact, the former
can be effectively overcome by simplifying the apps’ UI hierarchy,
and we design a practical approach to address almost all (>99%)
of the latter while only decreasing 3% of the data write speed
with large-scale deployment. We have released our measurement
code/data to the research community.

Index Terms—Android, responsiveness, slow rendering (SR),
frozen frames (FF), application not responding (ANR), system
not responding (SNR), redundant UI rendering (RUIR), write
amplification mitigation (WAM).

1. INTRODUCTION

ESPONSIVENESS is a key metric that impacts smart-
R phone user experience. Poor responsiveness would impair
the productivity, satisfaction, and engagement of users. Specifi-
cally on Android, if a UI (graphic) frame takes more than 16.67
milliseconds (ms) to render, it is deemed as a slow rendering
(SR) event; moreover, if the rendering time exceeds 700 ms, it

Manuscript received 15 May 2022; revised 12 November 2022; accepted 14
January 2023. Date of publication 17 January 2023; date of current version
8 January 2024. This work was supported in part by the National Key R&D
Program of China under Grant 2022YFB4500703, in part by the Natural Science
Foundation of China (NSFC) under Grant 62202266, and in part by Microsoft
Research Asia. (Corresponding author: Zhenhua Li.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by The
Institutional Review Board of Xiaomi Technology Co. LTD.

Hao Lin, Zhenhua Li, Mingliang Li, and Yunhao Liu are with Tsinghua
University, Beijing 100190, China (e-mail: linhaomails @gmail.com; lizhen-
hual983 @gmail.com; limingliang0527 @ gmail.com; yunhaoliu @gmail.com).

Cai Liu and Ping Xiong are with Xiaomi Technology Co. LTD, Beijing
100085, China (e-mail: liucai @xiaomi.com; xiongping1 @xiaomi.com).

Feng Qian is with the University of Minnesota, MN 55455 USA (e-mail:
fenggian@umn.edu).

Digital Object Identifier 10.1109/TMC.2023.3237716

is a frozen frame (FF) event [1]. Together SR and FF are also
known as frame dropping events. Worse still, if a foreground app
does not respond to user input or system broadcast for 5 seconds,
or a background app does not respond to system broadcast for
10 seconds, an Application Not Responding (ANR) event will be
triggered and a system dialog will be displayed [2]. The dialog
asks users to either continue wait or kill the app, neither of which
leads to pleasant user experience. Further, when a critical system
thread (e.g., I/O and UI) does not respond (i.e., is blocked) for
one minute, a restart of the system will be forced [3], which we
call a System Not Responding (SNR) event.

Over the years, tremendous efforts have been made to opti-
mize the responsiveness of Android at both the system’s thread
model and apps’ programming model. For the former, dedicated
render threads [4] are introduced to decouple GPU rendering
tasks from common CPU tasks, while V-Sync [5] is leveraged
to coordinate the GPU and CPU’s execution. For the latter,
Android currently requires all UI modification operations to be
pushed to the main thread [6] for prioritized processing. Despite
these efforts, SR, FF, ANR, and even SNR are still prevalent
on Android [7], [8]. SR and FF occur frequently in daily usage,
while ANR and SNR are relatively uncommon but can directly
impact user experience. Unfortunately, little have we understood
regarding their respective prevalence, characteristics, and root
causes, due to the lack of measurement and analysis of different
types of poor responsiveness. Such a lack of understandings,
insights, and datasets significantly hinders practical solutions to
address the problem.

Study Methodology: Conducting a comprehensive and in-
depth study on the poor responsiveness events is challenging.
First, capturing fine-grained system status is crucial to root cause
analysis, but is not sufficiently supported by existing mobile
systems (as will be discussed in Section II). Second, the remark-
able distinctions between SR/FF and ANR/SNR (in terms of
occurrence frequencies and the underlying mechanisms) require
dedicated and considerate approaches to effectively collect data
for all types of events.

To address the challenges, we devise a continuous system
tracing framework for collecting detailed in-situ system-level
data during poor responsiveness events, which combines the
monitoring of common system status indicators (including CPU
usage, memory consumption and I/O activity) with the instru-
mentation of critical system services to complete the puzzle.
We modify existing Android tools and/or systems to realize this
framework.

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9990-5090
https://orcid.org/0000-0001-7286-122X
mailto:linhaomails@gmail.com
mailto:lizhenhua1983@gmail.com
mailto:lizhenhua1983@gmail.com
mailto:limingliang0527@gmail.com
mailto:yunhaoliu@gmail.com
mailto:liucai@xiaomi.com
mailto:xiongping1@xiaomi.com
mailto:fengqian@umn.edu

1522

Specifically, for SR and FF, we develop a lightweight (in terms
of computation) kernel tracing tool by customizing atrace [9],
the debugging tool of Android, so as to efficiently trace critical
system functions concerning frame rendering in real time in
a non-intrusive manner (i.e., no system modification but only
toolchain customization). Unfortunately, for ANR and SNR,
similar debugging tools and the built-in monitoring facilities
of Android cannot provide sufficient diagnostic information
regarding several important system services even with root privi-
leges. We thus have to customize the vanilla Android Framework
layer to record these system services’ end-to-end call stacks.

Next, we design complementary approaches to measure the
poor responsiveness of Android smartphones, involving 15
hardware models equipped with different Android versions.
For SR and FF, our tracing framework incurs trivial compu-
tation/memory overhead, but requires debug (adb) privilege
and sometimes nontrivial network traffic cost, therefore making
large-scale measurements hard to conduct. We thus resort to
controlled benchmarking by synthetically generating represen-
tative workloads. We automate a series of popular apps on
the 15 experimental smartphones, and collect fine-grained data
regarding SR/FF in the meantime.

On the other hand, ANR and SNR are not often observed
in a common smartphone’s daily usage, so small-scale mea-
surements can easily lead to biased or even incorrect results.
Fortunately, in collaboration with a major Android phone vendor
called Xiaomi, we obtain a large-scale in-the-wild measurement
opportunity for ANR/SNR [47]. We invited the active users in
Xiaomi’s smartphone community to participate in our measure-
ment study; 30,000+ users opted in and collected data for us for
three weeks, involving 15 different models of Android phones.
All data are collected with informed consent of opt-in users, and
no personally identifiable information was collected.

Prevalence and Characteristics: Our measurements reveal
that all types of poor responsiveness occur prevalently on every
one of our studied hardware models. In particular, as many
as 4.9%—-18% of the rendered frames are subject to SR or FF
under typical workloads. On average, 1.5 ANR events and 0.04
SNR events occur on an Android system during the 3-week
measurement, and the maximum number of ANR (SNR) events
reaches 37 (18) on an Android system.

In detail, the time interval of consecutive SR/FF events is ~0.5
seconds, indicating that such events have considerable temporal
locality; on the contrary, ANR and SNR are highly correlated
in terms of occurrence probability but weakly correlated in
terms of occurrence time (i.e., an SNR event is usually not
caused by an ANR event, and vice versa). While better hardware
significantly reduces SR and FF, it surprisingly does not seem
to relieve ANR/SNR—among the 15 hardware models, the six
oldest and the six latest experience almost the same number of
ANR events per phone; the six oldest models experience even
50% fewer SNR events per phone than the six latest models.
In addition, as Android evolves from version 7.0 to 9.0 where
considerable performance optimizations have been added, there
are 74% fewer ANR events but 33% more SNR events.

Root Cause Analysis: To uncover the root causes of poor
responsiveness, we develop automatic analysis pipelines for

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

different types of event data. For SR and FF, we analyze the
hierarchical tracing data logged by us to obtain the critical
function call path of each rendering stage for a UI frame and
its correlation with essential application and system events. We
locate the most time-consuming stage in most SR/FF events as
the measure/layout step, where the major workload lies in the
calculation of UI components’ locations and sizes. Most surpris-
ingly, we observe that some seemingly lightweight apps with
fairly simple UI functionalities, such as Gmail, can experience
even more severe SR/FF events compared to video streaming
and gaming apps. Through careful examination of our collected
traces, we attribute this counter-intuitive phenomenon to the re-
dundant Ul rendering (RUIR) [10] problem of such apps, which
stems from a subtle defect of Android’s painter’s algorithm [11]
that renders UI components in a bottom-up manner.

For ANR and SNR, our pipeline processes the crowdsourced
logs by first extracting the blocked threads, and then generating
their wait-for graph [12] to figure out the critical thread that
leads to ANR/SNR. Based on this, we classify each ANR/SNR
event into a root-cause cluster using similar-stack analysis [13],
and manually analyze the root cause of unbiased samples in each
dominant cluster. The correctness of our analysis is validated us-
ing a different set of unbiased samples. Eventually, we discover
four major root causes of ANR/SNR, among which the largest
one comes from Android’s aggressive implementation of write
amplification mitigation (WAM) [14], an I/O mechanism which
was supposed to improve the user experience.

Mitigation Practice: Although there is no silver bullet for all
the bugs and defects in Android software design, we notice that
the critical root causes for SR/FF (i.e., RUIR) and ANR/SNR
(i.e., WAM), can both be effectively addressed.

For RUIR, our suggestion is leveraging the dynamic layout
inspector tool offered by Android SDK [15] to examine an
app’s Ul hierarchy. Developers can then easily locate and remove
overlapped UI components, redundant backgrounds, and prob-
lematic alpha settings to simplify the UI hierarchy. To demon-
strate the practical efficacy, our optimizations on popular apps
with RUIR problems have already yielded promising results,
reducing SR/FF by an average of 27%.

As for Android’s aggressive WAM strategy, a straightforward
fix is to batch WAM. However, Android’s batched WAM imple-
mentation is rather ineffective. First, its lazy nature (at most once
a day) cannot mitigate write amplification in time. Second, it
cannot be interrupted once started, leading to heavy I/O. Third, if
killed by users, the process will restart from the head. To address
the issues, we design a practical WAM by making batched
WAM fine-grained and non-intrusive. It records the deleted data
amount (S;), and uses a data-driven approach to decide a proper
threshold to trigger batched WAM on demand, achieving both
timely mitigation while amortizing the cost. We also make our
batched WAM interruptible and resumable. After rolling out our
design on part of the 30,000+ opt-in users’ phones, it reduces
almost all (>99%) ANR/SNR events caused by WAM. Our
design has been further adopted by five stock Android systems
since May 2019, benefiting ~20M users.

Contribution & Data/Code Availability: The above ef-
forts measure and tackle complementary aspects of Android

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: AGING OR GLITCHING? WHAT LEADS TO POOR ANDROID RESPONSIVENESS AND WHAT CAN WE DO ABOUT IT?

responsiveness, including the frequent SR/FF events and the
disruptive ANR/SNR events, thereby forming a holistic land-
scape of Android responsiveness problems and their practical
solutions. Our data and code are released in part at https://
Android-Poor-Respond.github.io with detailed guides to benefit
the community.

II. METHODOLOGY

We conduct complementary controlled benchmarking and
large-scale in-the-wild measurements on all types of poor re-
sponsiveness events to comprehensively understand the prob-
lems. This is enabled by our continuous system tracing frame-
work for collecting find-grained system-level data, and our
automatic pipelines for root cause analysis.

A. Continuous System Tracing Framework

To help app and system developers address the poor respon-
siveness problems, Android provides several debugging tools
and built-in facilities to record diagnostic information regarding
SR, FF, ANR and SNR events, which, however, are insufficient
to uncover the root causes of the problems. Specifically, for SR
and FF that manifest as rendering performance issues, Android
only monitors and reports the events’ occurrences (which can be
acquired through the dumpsy's system utility) as such events oc-
cur frequently in practice and thus traditional debugging method
of call stack logging could incur considerable time overhead.

On the other hand, for ANR and SNR which are both response
timeout events happening to an app process or a system thread,
Android further records a series of additional diagnostic infor-
mation including call stack of the target app process (only for
ANR), call stacks of a predefined set of system service processes
such as SystemServer and MediaServer, and the blocked
threads. Unfortunately, we find that the above information is still
insufficient for root cause analysis in practice due to missing the
call stacks of several important system service processes, such
as the Vold service (Android’s storage volume daemon). This
is because we constantly observe that the target app processes
interact with these system services and we intend to obtain the
visibility into those services that are not included in Android’s
diagnostic information.

To address the challenges, we modify existing Android tools
and/or systems to build a continuous system tracing framework
for efficiently collecting detailed system-level data during poor
responsiveness events. To this end, our framework pieces to-
gether the in-situ system panorama by combining the monitoring
of common system status indicators (including CPU/memory
usages and I/O activity) with the instrumentation of critical sys-
tem services, which are carefully selected to collect concerned
information while avoiding excessive computation and memory
overhead.

Tracing Framework for SR/FF: To select key system service
instrumentation points for SR/FF, our insight is that the function
call paths of frame rendering in Android mostly follow a fixed
pattern, because almost all the apps’ rendering tasks are realized
in a four-stage fashion—1) measuring that calculates each Ul
component’s size (e.g., height and width), 2) layout that decides

1523

the relative positions of different Ul components, 3) drawing that
renders the UI components on a canvas based on their measured
sizes and layout, and 4) composition that merges the app’s canvas
with those of other processes (e.g., the system status bar and
navigation buttons) to produce the final display for users. In
practice, the first two stages are accomplished by the app’s main
thread, the drawing stage is done by a dedicated render thread,
while the composition stage is realized in a system service called
SurfaceFlinger, which manages all the other processes’
rendering canvases.

With this insight, we propose to selectively instrument (a total
of 28) concerned system functions involved in the above four
rendering stages and trace their calls throughout the lifecycle of
a target app. This enables us to efficiently collect fine-grained
system-level data regarding SR and FF. To realize this, we
customize the atrace utility of Android to implement the
instrumentation of the 28 concerned system functions in a
non-intrusive manner, which does not require root privileges
or system modifications, but only debug privileges accessible
to common app developers. During an app’s running, our cus-
tomized atrace will record the begin and end timestamps
of the instrumented functions in a kernel ring buffer. We also
activate other critical trace points already provided by atrace,
including those of Binder transaction, I/O event, and CPU
scheduling to facilitate analyzing the problems.

We implement this tracing framework as a debugging tool
running on common PCs. When collecting data for SR/FF on a
phone, the tool would load and initiate our customized atrace
into the phone through adb commands (since the tracing re-
quires debug privilege), and then pull data from the kernel ring
buffer to the PC it runs on through network connections between
the phone and the PC. The data pulling is necessary because the
atrace ring buffer can only hold 15-second tracing data in
practice. Consequently, while our benchmark toolchain incurs
only ~1% CPU overhead and ~10 MB memory overhead for
a common Android device, the network traffic is nontrivial—
around 40 MB per minute.

Tracing Framework for ANR/SNR: As discussed above, for
ANR and SNR, we are interested in the call stacks of several
critical system services which frequently interact with apps in
practice. Unfortunately, tracing tools similar to atrace and
the built-in monitoring facilities of Android cannot provide
such diagnostic information even with root privileges [48]. As
a consequence, we are unable to build our tracing framework
without modifying the Android Framework layer. Therefore, we
develop a customized Android system, called Android-MOD,
to collect additional information essential for our analysis by
modifying the code of vanilla Android versions 7.0, 8.0 and 9.0.

Our data collection requires an Android device to install
(or upgrade to) Android-MOD. However, once it is installed,
our data collection is lightweight and incurs negligible runtime
overhead. Note that our modifications only include logging
additional lightweight system-level information and the logging
is triggered only upon the occurrences of ANR and SNR events.
Eventually, we observe only KB-level overhead for storage
and negligible overhead for CPU and memory, compared to
Android’s original mechanism.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

https://Android-Poor-Respond.github.io
https://Android-Poor-Respond.github.io

1524

TABLE I
HARDWARE AND OS CONFIGURATIONS OF OUR MEASURED PHONE MODELS,
ORDERED BY HARDWARE CONFIGURATIONS. IN PARTICULAR, ALL THE
MODELS. CPUS ARE OCTA-CORE QUALCOMM SNAPDRAGON MOBILE (SDM)

CPUs.
Model CPU Memory Storage Android
1. Redmi 5 SDM 450@1.8 GHz 3 GB 32 GB 7.0
2. Mi Al SDM 625@2.0 GHz 4GB 64 GB 7.0
3. Mi Max 2 SDM 625@2.0 GHz 4GB 64 GB 7.0
4. Mi Max 3 SDM 636@1.8 GHz 6 GB 64 GB 9.0
5. Redmi Note 5 Pro SDM 636@1.8 GHz 6 GB 64 GB 7.0
6. Mi A2 SDM 660@2.2 GHz 6 GB 64 GB 8.0
7. Mi 8 Lite SDM 660@2.2 GHz 6 GB 64 GB 9.0
8. Redmi Note 7 SDM 660@2.2 GHz 6 GB 64 GB 7.0
9. Redmi Pro 2 SDM 660@2.2 GHz 6 GB 64 GB 8.0
10. Mi Note 3 SDM 660@2.2 GHz 6 GB 64 GB 7.0
11. Mi 6 SDM 835@2.3 GHz 6 GB 64 GB 8.0
12. Mi Mix 2S SDM 845@2.8 GHz 6 GB 128 GB 8.0
13. Mi 8 Pro SDM 845@2.8 GHz 8 GB 128 GB 9.0
14. Mi Mix 3 SDM 845@2.8 GHz 8 GB 128 GB 9.0
15. Black Shark SDM 845@2.8 GHz 8 GB 128 GB 9.0

B. Complementary Measurements

With the devised system tracing framework, we next design
complementary approaches to measure the poor responsiveness
of Android smartphones, so as to accommodate the distinctions
between SR/FF and ANR/SNR in terms of occurrence frequen-
cies and the underlying mechanisms.

Our measurements involve 15 phone models with different
hardware and software configurations as listed in Table I to
collect in-depth data. The phone models cover low-end (i.e., the
5 models equipped with the SDM 450, SDM 625 and SDM 636
CPUs), middle-end (i.e., the 5 models equipped with the SDM
660 CPU) and high-end models (i.e., the 5 models equipped with
the SDM 835 and SDM 845 CPUs) of a major Android phone
vendor, Xiaomi, with which we collaborate to conduct the study
(as to be detailed soon). Note that although our studied models
are from a single vendor (Xiaomi), we believe our findings
are also applicable to other vendors’ Android systems. This is
because different vendors (including Xiaomi) typically adopt the
same set of core Android components [16], [17], [18],[19]. Also,
vendors’ system customizations are required to pass Google’s
CTS tests [20] to ensure that they have consistent functionalities
and thus do not break compatibilities with existing apps.

Controlled Benchmarking for SR/FF: As introduced above,
for SR and FF, our tracing framework incurs trivial compu-
tation/memory overhead, but requires debug (adb) privilege
and sometimes nontrivial network traffic cost, therefore making
large-scale measurements hard to conduct. We thus resort to
controlled benchmarking, which synthetically generates repre-
sentative workloads on devices and monitors SR and FF oc-
currences in the meantime, while leveraging the system tracing
framework to efficiently capture in-situ traces of the concerned
function calls involved in the four-stage rendering during the
benchmark process for subsequent analysis.

In more detail, we use the top-10 most downloaded apps from
Google Play as of Nov. 21stin 2021 for benchmarking, covering
seven major app categories. Table II lists the 10 apps and their
corresponding app categories. To synthesize the benchmark
workloads, we define a series of interactions with each app
based on its functionalities and UI layouts, which are extracted

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

TABLE II
ALL 10 ApPS USED FOR BENCHMARK ORDERED BY THE OCCURRENCE RATE
OF SR/FF EVENTS
Application SR/FF Occurrence Rate Category
Facebook 18.65% Social
Gmail 16.02% Email
Subway Surf 15.28% Gaming
Clash of Clans 13.34% Gaming
Chrome 12.08% Web Browser
Instagram 11.96% Social
Spotify 11.66% Music
YouTube 9.65% Video
Messenger 6.76% Instant Messaging
WhatsApp 3.44% Instant Messaging

by traversing the Activities of the app using Ul Automa-
tor[21], the Ul testing framework of Android. The workloads are
defined on a per Activity basis, as each Activity contains
a different Ul layout.

Specifically, for social, email and messaging apps, we find
that their main Ul layouts are typically composed of a scrollable
list (i.e., the message list) and several clickable items (i.e.,
message items). We thus define the corresponding workloads
as scrolling the list and clicking the items to mimic users’
viewing and checking the messages. For music and video apps,
we define the workloads mainly as viewing and playing the
multimedia contents which are the apps’ primary functions. For
web browsers, we access Alexa Top-10 websites [22] and scroll
to view them. In particular, for a scrollable Ul component, we
would leverage the £1ingToEnd API of Ul Automator to scroll
to the component’s end at the default rate, which performs a
center-to-top (or center-to-left/right depending on the scrollable
directions) swipe in 25 milliseconds for each action and repeats
the action until the component is scrolled to the end. Also, we
would wait for the previous action to finish and the UI to be
idle (which can be achieved through the waitForIdle API)
before initiating the next action. For gaming apps, however, their
UI components are usually not traditional Android components
and thus cannot be identified by UI Automator. For them, we
set the workloads as a series of actions to finish a game set by
manually identifying the components. The detailed actions and
setups of our benchmark workloads for each app can be found
at https:// Android-Poor-Respond.github.io.

To run the benchmarks, we execute the workloads on Android
phones through UI Automator [21]; typically, each app will be
run for one minute, which is sufficient for us to cover all the
interactable Activities of an app in practice. We then run
the controlled benchmarking on the 15 studied Android phones
to collect data.

Large-Scale Measurement for ANR/SNR: On the other hand,
ANR and SNR are not often observed in acommon smartphone’s
daily usage, so small-scale measurements can easily lead to bi-
ased or even incorrect results. Fortunately, in collaboration with
amajor Android phone vendor called Xiaomi, we obtain a large-
scale in-the-wild measurement opportunity for ANR/SNR. In
Oct. 2018, we invited the active users in Xiaomi’s smartphone
community through email to participate in our measurement
study by upgrading to Android-MOD, our customized Android
system that realizes the continuous system tracing framework

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

https://Android-Poor-Respond.github.io

LIN et al.: AGING OR GLITCHING? WHAT LEADS TO POOR ANDROID RESPONSIVENESS AND WHAT CAN WE DO ABOUT IT? 1525
Binder Activity, I/O Event and = e \

CPU Scheduling Info 1 !

| App Thread [J: Function Call {7 ing T Bi ivi |

_________ i : {11 CPU Schedul .21/ Event : Binder Activit !

N| S, :' i [measwelmout[gaw] e o

- ecompose vl |] '

Event Evort Extract R : — App Thread: [Critical Function Call Path | !
Traces vent Extraction :Thread1 — i '\ dequeueBuffer [render| swapBuffer | " Thread iding. 60% E
—————————— ' " . SurfaceFlinger | Binder! T i !

! Critical Function Call Path 29T, Timing Correlation 1

! Timeline |

i

Fig. 1.

for ANR/SNR, on their phones. Eventually, more than 30,000
users opted in. We explicitly informed the opt-in users that
Android-MOD is a lightweight update that will not affect their
apps, data, OS version, or system performance. The recorded
ANR/SNR data were uploaded to our data server when there
is WiFi connectivity. The measurement lasted for three weeks
from Nov. 1st to Nov. 21st in 2018.

C. Root Cause Analysis Pipelines

To figure out the root cause of a single poor responsiveness
event, app or system developers usually analyze its correspond-
ing log by hand. However, such manual analysis does not scale.
Therefore, we devise automatic analysis pipelines for extracting
root causes from the collected tracing data.

Analysis Pipeline for SR/FF: For SR and FF, our pipeline is
based on our devised buffer-aware hierarchical timing correla-
tion root cause analysis method, which first extracts true SR/FF
events from the data by paying special attention to Android’s
frame buffering mechanism to rule out false positives, and then
exploits the hierarchical nature of the kernel tracing data to locate
the critical rendering function call path and its highly correlated
system/app events based on their consumed time. Fig. 1 shows
the basic workflow of our automated pipeline.

Specifically, to extract SR/FF events from the tracing data
collected in Section II-B, we can calculate the time consumed
for rendering a frame using the timestamps of the functions
called during the frame’s different rendering stages. Generally,
if a frame takes more than 16.67 (700) milliseconds to render,
we know that an SR (FF) event has occurred based on Android’s
definition [1]. However, we find that this simple calculation sug-
gested by Android introduces many false positives in practice.

Delving deep, we find that such false positives stem from
Android’s triple buffering mechanism. Recall that in the com-
position stage of frame rendering, an app would send its canvas
(which is a memory buffer) to the SurfaceFlinger service
to composite the final display. Meanwhile, SurfaceFlinger
should give back its previously composited canvas buffer to the
app so that the app can draw the next frame on it, i.e., the app
and SurfaceFlinger “swap” their buffers. To reduce the
app’s waiting SurfaceFlinger in the swapping process,
Android introduces triple buffering, where the app holds two
canvas buffers (denoted as Bu f fer; and Buf fers) and Sur-
faceFlinger holds one buffer. In this way, even if Sur-
faceFlinger is busy dealing with its buffer and cannot swap
itwith Bu f fery, the app can directly draw on Bu f fers without

Workflow of our automatic pipeline for analyzing the root causes of SR and FF events.

waiting for swapping, therefore improving the responsiveness of
Android [49].

When that happens, Buf fers becomes a “redundant” canvas
buffer. As a result, even if the next frame takes more than 16.67
milliseconds to render, Buf fery can be swapped into Sur-
faceFlinger, thus avoiding SR/FF. Unfortunately, simple
frame time calculation would still determine this case as SR/FF
since the frame rendering time is long, leading to false positives.
To cope with this, we take the number of ready buffers of the app
into account (which can be known from its Binder queue)—we
determine a frame with long rendering time as a true SR/FF
event only if there is zero ready buffer.

Upon detecting an SR/FF event, we further attempt to pinpoint
its root causes based on the fine-grained system tracing data we
collect. To this end, we find that the tracing data bear inherent
hierarchy, i.e., the calling relations between functions—if a
function F4’s begin/end time wraps that of another function
Fi, we know that F'4 calls F'g. Given this, we can extract the
most time-consuming rendering stage based on different stages’
execution time. However, in practice we notice that the rendering
of a frame is usually parallelly performed in multiple threads
or even processes (as discussed in Section II-A) for optimal
performance. Therefore, even if a rendering stage consumes a
long time, it may not be on the critical function call path that
decides the final rendering time. As exemplified in Fig. 1, we
thus further extract the critical path by identifying the longest
call path in relevant rendering threads’ tracing data.

After uncovering the critical function call path, we next cor-
relate it with the in-situ Binder transaction, I/O event and CPU
scheduling information we collect to pinpoint the actual causes
in the system. Specifically, for Binder transaction and I/O event,
we calculate the correlation value as the proportion of time used
to accomplish them in the critical path. For CPU scheduling, we
use the proportion of thread idling, waiting or blocking time as
the correlation value. With these correlation values, we compare
them with their corresponding average correlation values during
normal frames to identify abnormality. For example, as shown in
Fig. 1, the thread idling time takes up 70% of the time spent in the
critical call path, which is significantly larger than the average
value in normal frames (around 3%). Our analysis pipeline
would then highlight the issue as the most probable root cause.
If multiple issues are identified, they are all reported to facilitate
analysis. Also, we pay special attention to the core scheduling of
typical ARM CPUs with the big.LITTLE architecture [23],
which couples power-efficient (LITTLE) cores with performant
(big) cores to strike a balance between power efficiency and

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

1526

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

—:—» CPU/Memory Usage > CPU Usage; |
: @I_Ir?ckeéi Wait-for Memory Usage; :
—_—— rea . . .

/N | Graph Java Functions; i gjimilar-Stack

| . Analyze Native Libraries; | Analysi
Decompose | | Trace Trace > nalysis

1

_II_Er\;i zts | Traces | Wait/Lock/IPC O Kernel Functions; : @
| Ti |
| -] Process Names; |
: App/Critical Threadq Threadk End Node Number of Looks: |
| Process R
! e Length of Graph; | | Q . Q
| / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| |
+—»| Traces of System Services R - |
X egular Expression Feature Vector Clusters of Events
| |

Fig. 2. Workflow of our automatic pipeline for analyzing the root causes of ANR and SNR events.

performance. If the app’s main or rendering thread is scheduled
to the LITTLE cores (the real-time scheduling information is
recorded by the kernel and captured in our data) and the cores
are fully utilized during rendering (i.e., 100% CPU utilization),
it is highly likely that its long rendering time is caused by the
worse performance of the LITTLE cores.

However, if the critical call path’s correlations with these
crucial system factors are trivial (i.e., less than the average
correlations during normal frames), it is more likely that the
root causes lie in the apps’ own designs (e.g., complicate UI).
For them, we locate the corresponding UI components with long
rendering time to facilitate the root cause analysis.

Analysis Pipeline for ANR/SNR: For ANR/SNR, we develope
the pipeline based on the observation that ANR/SNR events with
the same root cause tend to have similar symptoms in terms of
call stack patterns and lock contention status. Recall that, for
an ANR event, we collect call stacks of the app process and
system service processes, as well as the blocked threads of the
recorded processes. As shown in Fig. 2, we first decompose the
call stacks of the app process into several ones corresponding
to each thread of the process. Note that among the multiple
threads of the app process, there is only one blocked thread that
isrecorded as Blocked by Android. Nevertheless, this blocked
thread (7}) may not be the critical thread ('T..) that is expected to
be the most relevant to the root cause of the ANR event, because
the blocking of T3, might be in fact caused by other threads of the
process or even threads of system services due to inter-process
communication (IPC).

To identify T, we construct a wait-for graph [12] for the
app’s process, based on the wait, lock, and IPC information we
recognize in each thread’s call stack, as shown in Fig. 2. In the
wait-for graph, a node stands for a thread and an edge going
from thread T to 77 indicates that 77 is currently blocked by 7.
Thus, we can trace from 7}, until we find the last thread ' that
has no successor, which is 7.

Having found the critical thread 7., we remove irrelevant
information (e.g., line number, memory address, and thread ID)

'In a very small portion (<1%) of cases, e.g., when a cycle is detected in
the wait-for graph, we can find multiple critical threads for an ANR event.
Then, each critical thread will be processed separately and the ANR event can
simultaneously belong to multiple root-cause clusters.

from the call stacks using regular expressions.? The regular ex-
pressions are diverse in terms of their lengths and complexities,
e.g., some are as simple as numbers while others involve more
complex patterns. We also determine the appropriate order of
applying them to avoid false removals. The remainder of the
call stacks, which contains considerable “feature” information,
is then reorganized into a feature vector. As depicted in Fig. 2,
a typical feature vector mainly consists of eight components
that represent CPU usage, memory usage, Java functions, native
libraries, kernel functions, process names, the number of locks,
and the length of the wait-for graph.

Based on the above processing, we can classify an ANR event
into the corresponding root-cause cluster using similar-stack
analysis [13]. If the feature vector (V;) of an ANR event ¢ is
similar to that (V;) of another ANR event j , ¢ and j will be
classified into the same root-cause cluster. When measuring
the similarity between V; and V}, instead of directly applying
off-the-shelf similarity metrics, we customize the similarity
metric by taking into account the high heterogeneity across
the features’ semantics, formats, and generality. Specifically, we
take the following “split-and-merge” approach: we first separate
all the features of each vector V' into two feature sets: [, and
F, given their heterogeneity; we then calculate the similarity
values for F), and I, separately (denoted as .Sy, (¢, j) and S, (4, j)
respectively between V; and V}); finally, we combine them to
the overall similarity denoted as S(i, j).

In our design, I, contains CPU usage, memory consumption,
the instruction set, the app fatal signal, and the app failure
code, etc. These features tend to be “generic” in that similar
measures may also be observed during the course of normal
OS/app operations. To avoid over-fitting, we compute .S, (i, 7)
using the Jaccard Index [24], a simple metric that measures the
set similarity:

|Fp,ime,j|
+|Fp,j‘ - |Fp,ime7j|’(l

Sp(i,j) = ‘](Fp,ian,j) = ‘F ‘
Yy

where J(...) is the Jaccard Index function. In contrast, F,
contains Java functions, native libraries, kernel functions, the
number of locks, the length of the wait-for graph and process
names, efc. that are more specific to ANR/SNR events compared

The full list is at https:// Android-Poor-Respond.github.io

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

https://Android-Poor-Respond.github.io

LIN et al.: AGING OR GLITCHING? WHAT LEADS TO POOR ANDROID RESPONSIVENESS AND WHAT CAN WE DO ABOUT IT?

to F,. We therefore calculate S.(¢,7) using the rerm vector
space model [25] and cosine similarity [26], which provide
fine-grained, dimension-by-dimension comparison between two
feature vectors:
.o F, c,t ’ F c,j
Sc(zv]) COS<Fc,zaFc,J> HFc,zH ||Fc,j||7 2)

The final similarity S(i, j) is derived as the weighted average
between S, (7, j) and S.(i, j) where the weights are the respec-
tive cardinalities of the set I}, and F.. V; and V; will be classified
into the same root-cause cluster if S(é, j) is above a threshold,
which is empirically set to 0.95 based on our inspection of
representative ANR samples.

The similar-stack analysis can generate thousands of root-
cause clusters. However, we observe there are only several
dominant clusters that include the majority of ANR events. We
manually analyze the dominant clusters to validate our analysis
pipeline. Specifically, for each cluster, we first manually analyze
the traces of the K (empirically set to 100) samples nearest to the
cluster centroid to find out their root cause(s). In practice, we no-
tice that usually the vast majority of the samples share exactly the
same call stack due to our high similarity threshold (0.95), whose
root cause is then most likely the cluster’s root cause. We thus
first analyze their root cause mainly by examining their critical
threads’ related system components, functionalities, and in-situ
system status based on our experiences and domain knowledge.
For example, when the samples’ call stacks indicate that the
critical thread experiences timeouts during Java VM’s (related
system component) garbage collection (functionality) when the
available memory is low (in-situ system status), we attribute
the root cause to insufficient memory. The above root cause
analysis results is also validated by Xiaomi’s internal testing
procedure, which involves the independent manual examination
of the corresponding traces by 3~5 system experts from the OS
development team of Xiaomi, so as to ensure that subsequent
problem fixings are not affected by false positives. Next, for
the other event samples with different yet similar call stacks in
the same cluster, we also analyze their root causes through the
above process and check whether they are consistent with the
extracted root cause; if not, we determine that the events are
falsely classified.

We then also apply the above analysis to the K samples
furthest from the centroid, comparing their root cause(s) with
those nearest to the centroid to check whether they are still
consistent. The examination result shows that all the inspected
cases are perfectly categorized with no false positives. This is
mainly because our high similarity threshold (0.95) is not easily
biased by high similarity in sub-dimensions of the call stacks,
e.g., high similarity in Java functions yet low similarity in native
libraries, which usually implies different event root causes in
practice according to our experiences.

For an SNR event, our collected log contains the call stacks
of multiple system service processes, where only one is flagged
by Android as the critical process that leads to SNR. Then, we
figure out the critical thread from this process in a similar way as
in the case of ANR; the subsequent processing and classification
are similar to those of ANR.

1527

10% 7‘—'—‘_.,__._._’__'_.\‘\-\‘—‘\.\.’

1% ¢

0.1% £

Percentage of Frames
[
.
m

0.01%

000M% e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Phone Model
Fig. 3. Occurrence rates of SR/FF per phone model.
1
0.8
o6l Min =16.7
v Median = 13088.9
o) Mean = 35.5
0.4t Max = 24.3
0.2F
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700 800
Rendering Time (millisecond)
Fig. 4. Frame rendering time of SR and FF events.

III. MEASUREMENT RESULTS

Based on our measurement and automatic analysis, we have
multifold findings on Android poor responsiveness in terms of its
prevalence and characteristics, as well as in-depth understand-
ings of their root causes.

Prevalence of Poor Responsiveness: Our measurement re-
veals that all types of poor responsiveness occur prevalently
on all the 15 studied phone models. As shown in Fig. 3, as
many as 4.9%—-18% of the rendered frames during benchmark
experiments are subject to SR and FF. Further, as depicted in
Fig. 4, among the captured SR and FF events, we notice that
>99% of the frames are SR events with 70% of them having
less than 32 ms frame rendering time, which translates to >30
frames rendered per second and thus are usually unnoticeable
in practice. However, the <1% FF events can take up to several
seconds to render the frames, which have severe impacts on user
experiences.

Similar skewed distributions can also be observed for
ANR/SNR. As shown in Fig. 6, an average of 1.5 ANR events
and 0.04 SNR events occur on an Android phone during the
three-week measurement. However, for ANRs, around a half
(51%) of phones do not experience ANR, while the maximum
number of ANR events occurred on an Android phone is 37. For
SNRs, most (97%) phones do not experience SNR, while the
maximum number of SNR events occurred on one phone is 18.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

1528

08
Min =0

0.6 [P
w Median = 40.58
8 Mean = 547.41

0.4 Max = 65274.43

0.2

0
0 0.5 1 1.5 2 25 3

Time Interval (second)

Fig. 5. Time interval for consecutive SR/FF — SR/FF.

On average, 29% devices encountered at least an ANR or SNR
event every ten days.

Correlations Between Events: Although SR events are signif-
icantly more frequent (over 1000x) than FF events, we notice
that their occurrences are in fact highly correlated as shown in
Fig. 3 across different phone models. The sample correlation
coefficient [27] between their occurrence is as high as 0.93.
Similarly for ANR and SNR events, the sample correlation
coefficient between their occurrences can reach 0.73, which also
suggests that they are highly relevant.

To understand the high correlations between events, we ex-
amine the time interval between two neighboring SR/FF events.
As depicted in Fig. 5, we discover that the median time interval
s 40.58 ms, indicating that the occurrences of SR/FF events tend
to be temporally localized. We further analyze the time between
an FF event and its most recently preceding SR event (“FF —
SR”), and find that the median time interval is 653.98 ms, which
suggests that when an FF event occurs, it is highly likely that
SR events will follow. In contrast, an SR event is usually not
followed by FF events. Closer examination reveals that these
patterns stem from SR and FF events’ relations with system
resource provisioning. We find that when FF events occur, the
resource consumption of the system is extremely high (e.g., the
CPU utilization is around 100%), therefore can easily trigger
SR events as well. On the other hand, during SR events the CPU
utilization is ~60%, which is higher than the average level but
may not lead to FF events.

On the exact contrary, we find that the median time interval
between every SNR event and its most recently preceding ANR
event (“ANR — SNR”) is as long as 0.95 day and the average
is 2.19 days, as shown in Fig. 7. Therefore, an SNR event is
usually not caused by an ANR event. Additionally, we examine
the time interval between every ANR event and its preceding
SNR event (“SNR — ANR”), and find that ANR is not caused
by SNR, either (Fig. 7). The high probability correlation and
weak time correlation suggest that ANR and SNR tend to be
caused at the system level. There is no causality between ANR
and SNR events.

Hardware Configurations: As affected by vendors’ propa-
ganda of “better hardware helps improve software responsive-
ness” [28], [29], [30], non-professional users might intuitively

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

10 -
® i
c
o 1F =
E’_ H
2 ANR
§ 01 | @ .- SNR ° i
“LE ° N k oo
o : "o
8 001 v * y 4
g H
z
0001 L L L L L L L L L L L L L L L
1234567 8 9101112131415
Phone Model
Fig. 6. Avg. ANR/SNR event number per model.
1
0.8
W 0.6)
£ [Min=0
C04l// |Median=095 | |Median =22
Mean = 2.19 Mean = 3.74
0.2 :' Max = 20.14 Max = 20.69
0
0 4 8 12 16 20
Time Interval (day)
Fig. 7. Time interval for consecutive ANR — SNR and SNR — ANR.

believe that a phone with more advanced hardware experiences
fewer poor responsiveness events. Our measurement finds that
this may be true for SR and FF events. As shown in Fig. 3, with
better hardware, a tested device is much more likely to encounter
fewer SR and FF events during the measurement, which is due
to their close relations with system resource provisioning as dis-
cussed above. Surprisingly perhaps, we can see from Fig. 6 that
this is not the case for ANR and SNR—hardware configurations
have no correlations with the prevalence of ANR. Specifically,
among the 15 models of phones we study, the six oldest models
(Model 1-6, released between Dec. 2017 and Apr. 2018) and the
six latest models (Model 1015, released between May. 2018 and
Oct. 2018) experience almost the same number of ANR events
per phone (when the Android versions are the same). Detailed
hardware configurations of the 15 phone models can be found
in Table I. Further, we notice that better hardware even appears
to aggravate SNR—the six oldest models experience 50% fewer
SNR events than the six latest models per phone. The above
results clearly illustrate that ANR and SNR are not a hardware
issue.

Android Versions: As Android evolves, considerable perfor-
mance optimizations have been added to the Android framework
and the OS kernel [31], [32]. In particular, we are interested in the
occurrences of ANR and SNR events across different Android
versions, which are less affected by hardware configurations as
compared to SR and FF. Naturally, we expect ANRs and SNRs in
recent Android versions to be substantially reduced. Compared
with Android 7.0, there are 74% fewer ANR events but 33%

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: AGING OR GLITCHING? WHAT LEADS TO POOR ANDROID RESPONSIVENESS AND WHAT CAN WE DO ABOUT IT?

"2 10* ¢ Measurement
o Zipf fitting
it
<
< ~
G
9]
o)
§ log(y)=-a*log(x)+b >

0

10
10° 10°

Ranking

Fig.8. Ranking of apps by ANR event numbers. Herea = 1.41and b = 4.31.

more SNR events happening on Android 9.0 (per phone). This
indicates that the performance optimizations have taken effect
in improving the responsiveness of apps.

However, we find that the system-level responsiveness (i.e.,
the situation of SNR) gets worse, probably because the more
recent Android 9.0 (released in Sep. 2019) is not as stable
and robust, despite bearing higher performance. In comparison,
Android 8.0 (released in Aug. 2017) has the best system-level
responsiveness, probably owing to its moderate performance and
sound stability/robustness.

Mobile Apps: In our benchmark experiments, we run 10 apps
on each tested device and examine the occurrence rates of SR and
FF of each app. As aresult, we show that Facebook (a social app),
Gmail (an email app), and Subway Surf (a 3D game) are the top-3
apps that experience the highest SR/FF occurrence rates, which
are 18.65%, 16.02% and 15.28%, respectively. For Facebook
and Subway Surf, we attribute this to their high workloads,
including frequent video streaming and 3D scene rendering.

For Gmail, the result may be somewhat surprising as email
apps are fairly simple in terms of their Ul functionalities. Further
examination finds that this issue stems from the severe redundant
Ul rendering (RUIR) problem of Gmail’s Ul components. In
Android, an app’s UI components are usually organized in a
hierarchical fashion, where each UI component resides in a cer-
tain Ul layer. Using the painter’s algorithm [11], Android draws
an app’s UI layers in a bottom-up manner. This algorithm can
ensure that the overlapped UI components with different alpha
(transparency) settings are properly blended. However, if the
upper layers’ alpha values are 1 (i.e., opaque), lower layers are
drawn but are in fact invisible, leading to unnecessary resource
consumption. Therefore, if an app’s Ul layout is improperly
designed, e.g., having too many redundant layers and alpha
settings, the RUIR problem could be rather severe. In fact, we
confirm that the Ul layout of Gmail incurs heavy RUIR, resulting
in a large portion of the UI being redrawn for over four times
(Iess than one time is ideal) during rendering. In Gmail, we find
that every item in the email list is nested with 3~4 UI layers,
leading to severe RUIR problem.

On the other hand, for ANR and SNR, our large-scale mea-
surement captures a total of 50,147 ANR events, involving a
total of 1,446 Android apps. As depicted in Fig. 8, when rank-
ing these apps by their corresponding number of ANR events
(in descending order), we observe a nearly-Zipf [33] skewed
distribution, where an app’s ranking (denoted as AN Rp) and

1529

its number of ANR events (denoted as AN R) should fit the
following distribution:

log(ANRy) = —alog(ANRR) + b. 3)

To validate this, we fit the data by first taking the logarithm of
ANRp and AN Ry, and then using linear regression to fit the
negative linear relation shown in the above equation. Our vali-
dation shows that when ¢ = 1.41 and b = 4.31, the distribution
would fit the data with a 0.92 coefficient of determination [34]
(R2, ranging from 0 to 1), which is fairly close to 1 (the perfect
fitting). Among the 50,147 ANR events occurring to 1,446 apps,
30,489 (60%) are attributed to only the top-10 (0.7%) apps, while
the remaining (40%) belong to the vast majority (99.3%) of apps
in the “long tail”. The reason is straightforward: the top-10 apps
are all extremely popular in users’ daily life, thus bearing the
highest probabilities of ANR.

Root Cause Analysis: To pinpoint the root causes of SR and
FF, we leverage buffer-aware hierarchical timing correlation
(cf. Section II-C) to analyze the fine-grained kernel tracing
data collected in benchmark experiments on the studied phone
models. As a result, we uncover three major root causes: 1)
complex UI components and high rendering workloads of apps
(61%), 2) slow I/O and Binder transactions (28%), and 3) long
CPU scheduling delay (11%).

In detail, for the first root cause, we find that the critical func-
tion call paths in related events tend to be that of the measuring
and layout rendering stages, where CPUs need to compute the
size and position of each Ul component. Particularly, we find that
a considerable portion (73%) of such events occur on apps with
the RUIR problem. For the latter two root causes, they suggest
that the system is most probably experiencing resource under-
provisioning or contention. More surprisingly, in 34% of the
cases we notice that thebi g cores remainidle when the LITTLE
cores are fully occupied, leading to SR/FF events. Delving
deep we uncover that this is because SurfaceFlinger,i.e.,
the system service that composites the final frame, is always
scheduled to the LITTLE cores (their cpuset configurations
are fixed to the LITTLE cores) to aggressively conserve battery
power in vanilla Android. This works well on devices with more
powerful CPUs, but tend to incur SR/FF on low-end devices. In
fact, Xiaomi have recently adjusted their scheduling policy by
allowing SurfaceFlinger to run on big cores for low-end
devices when LITTLE cores are drained, which almost fully
addresses the issue in practice. We thus suggest that vendors
should adapt their resource scheduling policies to the specific
hardware configurations.

For ANR and SNR, we leverage the automatic pipeline (cf.
Section II-C), to acquire 1,814 root-cause clusters, among which
three dominant clusters include the majority (74%) of ANR/SNR
logs. Then, we manually analyze the root causes and discover
them as 1) inefficient Write Amplification Mitigation or WAM
(35%), 2) lock contention among system services (21%), and
3) insufficient memory (18%). Finally, we merge all the other
clusters into a single large cluster, whose root cause is regarded
as 4) app-specific defects (26%).

Among the aforementioned root causes of SR/FF and
ANR/SNR, the second (i.e., slow I/O and Binder transactions for

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

1530

SR/FF and lock contention for ANR/SR) and the third (i.e., long
CPU scheduling delay for SR/FF and insufficient memory for
ANR/SNR) can hardly be addressed since resource contention
and underprovisioning are classic OS challenges; app-specific
defects are even more challenging, given that there is no silver
bullet for bugs and defects in software engineering. On the other
hand, we find that the the critical root causes for SR/FF (i.e.,
RUIR) and ANR/SNR (i.e., WAM), can both be effectively
addressed.

IV. MITIGATION PRACTICES

In this section, we first present our practices of overcoming
RUIR of apps in Section IV-A. We next describe the internals
of the largest root cause (i.e., the WAM issue) of ANR/SNR
in Section IV-B, and then design a practical approach to effec-
tively eliminating the root cause with negligible overhead in
Section IV-C.

A. Overcoming RUIR With UI Layout Trimming

Recall that in Android, an app’s Ul components are organized
in a hierarchical (layered) manner. Android renders different Ul
layers in a bottom-up fashion following the painter’s algorithm,
which, however, leads to the RUIR problem if the app’s Ul
layout is not carefully designed, e.g., the layout contains many
unnecessary backgrounds which will be covered by upper-layer
components and thus invisible to users, but are still rendered
by the system. As discussed in Section III, as many as 43% of
SR/FF events occur on apps with the RUIR problem, indicating
that it is a major root cause of SR and FF events.

Fortunately, the RUIR problem can be effectively overcome
by optimizing a target app’s Ul hierarchy. To this end, we devise
adynamic layout trimming approach. In detail, we first leverage
our system tracing tool (cf. Section II-A) to capture fine-grained
data at a target app’s runtime, and then pick out UI components
with long rendering time, which are most probably the compo-
nents with the RUIR problem. With this, we extract the inner Ul
hierarchy of the above UI components using Android’s dynamic
layout inspector tool [15], based on which we can quickly
pinpoint redundant UI components in the hierarchy. Meanwhile,
we pay special attention to transparent components which may
overlap with others but do not actually cover lower-layer com-
ponents due to its transparency. Having uncovered the redundant
UI components, we list their corresponding (Java/Kotlin) Class
names in order to enable developers’ quickly locating them at
source code.

To evaluate the effectiveness of our proposed approach of mit-
igating RUIR, we apply it to five popular open-source Android
apps: Wikipedia (a utility app), FairEmail (an email app), K-9
Mail (an email app), Amaze (a file explorer app) and Feeder (a
news feed app). We first measure the apps’ SR/FF occurrence
rates on the 15 studied phone models, and then locate and remove
redundant UI components using our proposed dynamic layout
trimming method. For example, our dynamic layout trimming
method uncovers that K-9 Mail uses the <include> tag in
its UI layout file, which directly nests another layout file and
introduces an unnecessary layer of hierarchy, leading to RUIR.
To resolve this, we directly merge the two layouts with the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

<merge> tag to avoid redundant nesting, which preserves
the functionality of <include> while being able to remove
redundant hierarchy when including another layout file. We
further validate that the trimming does not violate the original
app functions by examining the Activities related to the
trimmed UI components. This is achieved by applying our
UI automation method in Section II-B to interact with all the
interactable UI components in the Activities and checking
whether runtime exceptions are raised that indicate function
violation. We also extract and manually examine the code related
to the trimmed components to ensure that there is no side effect
introduced by our trimming.

Finally, we measure the apps’ SR/FF occurrence rates on the
15 devices again to evaluate the effectiveness of our method. As
aresult, we find that the SR/FF occurrence rates are reduced by
11%~32%, averaging at 27% for the apps. In particular, we ob-
serve that severe SR events with >400 ms frame rendering time
and FF events have been reduced by 46% and 53%, respectively,
which can all noticeably impact user experiences according
to prior work [35]. Specifically, since FairEmail’s RUIR prob-
lem is the least severe, its responsiveness improvement by our
method is less significant than that of others. On the other hand,
Wikipedia, which is subject to severe RUIR, benefits the most.

B. Understanding Android’s WAM

Android’s Implementation of WAM: As the storage medium of
almost all mobile phones, flash storage comes with two unique
characteristics. On one side, reading a page (typically of 4 KB),
which is the basic data access unit in flash storage, is direct and
fast compared to that in traditional rotating-disk storage. On the
other side, a block-level erase operation is required before writ-
ing data into a page, where a block consists of multiple (e.g., 128
or 256) pages, resulting in an undesirable effect known as write
amplification [36] which can significantly degrade the data write
speed. Consequently, a write amplification mitigation (WAM)
mechanism [37] is introduced into Android: once a page’s stored
data has been logically deleted in the file system, WAM marks
it as invalid using the discard command. Thus, before the
next write, the flash storage can trim a block containing invalid
pages by moving valid pages in the block to other blocks. In
this way, the flash storage can later (e.g., when performing a
write) directly erase the block with only invalid pages, leading
to improved write performance.

In Android, two types of WAM are provided. By default,
WAM is executed in a real-time manner. Many common op-
erations (e.g., screen unlock, app start, and app install/uninstall)
in daily use could incur a number of file deletions. Upon a file
deletion, a sequence of discard commands are sent to the
storage controller, as demonstrated in Fig. 11. In addition, when
the mobile phone is idle at 3 a.m. and under charge, Android
executes WAM in a batched manner (we call lazy WAM), which
marks all the invalid pages in flash storage at a single run.

Benefits of WAMs: WAM (in particular real-time WAM) is
useful and effective. For data write speed, we conduct bench-
mark experiments to measure the random write speed and
the sequential write speed of each experimental phone. The
former represents the worst-case data write speed while the

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: AGING OR GLITCHING? WHAT LEADS TO POOR ANDROID RESPONSIVENESS AND WHAT CAN WE DO ABOUT IT?

2 —————————25 5
a [ISequential Write 2
S 150 : a
= [JRandom Write =
s 20 =
g 3
2 3
® 100 15 &
)

= o
s 10 %
g 50 £
g 5 3
> C
H g
»n 0 0

Real-time Lazy Practical

Fig. 9. Random and sequential write speeds of different WAM mechanisms.

latter represents the best-case. The benchmark results are listed
in Fig. 9, which shows that on our studied phone models
(cf. Table I), real-time WAM can increase the random (sequen-
tial) write speed by an average of 23% (26.6%) compared to the
lazy WAM.

The Inefficiency of Android’s WAM: Despite benefiting the
data write speed, real-time WAM comes with an unexpected
defect which can oftentimes lead to ANR or SNR. Specifically,
from our collected logs of WAM-incurred ANR/SNR events, we
observe a very common scenario as shown in Fig. 11. Suppose
APP-1 is issuing a delete command while APP-2 is issuing
a write command. In principle, the write command (of
APP-2) should not be affected by the discard commands
(of APP-1), since the former is synchronous while the latter
are asynchronous (so the former should be executed with a high
priority). In practice, however, a special synchronous command,
fsync, is often issued before write or read [38] to ensure
the data consistency between memory and storage. The specialty
of £sync lies in that its execution requires the completion of all
the preceding di scards. Hence, due to fsync, discardhas
in fact become a quasi-asynchronous [39] command that could
block its succeeding wr i t e command, thus leading to the ANR
of APP-2 or SNR of Android.

To mitigate the defect of real-time WAM, an intuitive ap-
proach is to adopt “lazy” WAM instead of real-time WAM. Nev-
ertheless, we find this lazy WAM mechanism can hardly meet
our goal for three reasons. First, it is performed in a too “lazy”
manner (at most once per day) and thus cannot mitigate write am-
plification in time. Second, once started, it cannot be interrupted;
during the entire process (which is computation-intensive and
time-consuming), if the screen is unlocked the user may well
experience poor responsiveness. Third, if it is terminated (e.g.,
the user kills the process) during the run, it will always make a
“fresh” restart from the head when executed again.

C. Practical WAM

To mitigate write amplification in Android without bringing
ANR or SNR, we design a practical WAM mechanism by making
batched WAM fine-grained and non-intrusive.

Data-Driven WAM: We take a data-driven approach to deter-
mine when to trigger the execution of batched WAM on demand.
We use the analysis in benchmark experiments described in
Section IV-B which contain two-fold information: a) random
write speed and b) total duration of batched WAM (how long
it takes to fulfill all rounds of batched WAM in a whole day).

1531

RN
(o]
0|

-
~
.

-
(o)}
T

Random Write Speed
- Total Duration of Batched WAM

Random Write Speed (MB/s)
>

RN
ESN

Total Duration of Batched WAM (s)

o
N
NN
D
[e¢]
N
o
-_—
N
—
N
N
»

Fig. 10. Duration of batched WAM and random write speed for different S.

APP-2 APP-1

wlrite delete

ANR or SNR

]
Command .
write | fsync

Queue discard|discard

discard|discard|discard

(V2 (V2
7N 7N
blocked delayed

Blocks
Invalid _IBIOCk_l
Page I -Page -

*—1 Fash
Storage

Fig. 11. Android’s write amplification mitigation for flash storage can lead to
ANR or SNR events.

Lz

As shown in Fig. 10, when a smaller threshold is used for Sy,
write amplification can be better addressed and the random write
speed is expected to increase, but the total duration of batched
WAM will increase since more rounds of batched WAM need
to be executed for the same total amount of deleted data (given
that each round of batched WAM involves non-trivial startup
time and system overhead). We notice that S;=6 GB tends to
balance the above tradeoff. We also find that the 6 GB threshold
works well under real workload based on our small-scale test
deployment.

Support for Pausing and Resuming: A shortcoming of An-
droid’s batched WAM mechanism is that it cannot be interrupted
once started. We thus adjust the execution logic of Android’s
batched WAM so that it can be paused and resumed to provide a
better user experience. Specifically, we make two improvements.
First, we register a broadcast receiver for the system’s screen
lock/unlock event, so that once the screen is unlocked, the
receiver will get notified and then send a signal to pause the
execution of the batched WAM. Second, we modify the batched
WAM thread, which comprises a loop of trimming page groups
(a page group typically consists of 32K pages) to mitigate write
amplification. In our modification, the batched WAM thread
responds to the pause signal by recording the number of page
groups that have already been trimmed and other necessary
states before interrupting the execution. This allows the job to be

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

1532

resumed later when the screen is locked. In this way, the phone’s
perceived responsiveness in the presence of batched WAM is
significantly improved.

Large-Scale Evaluation and Deployment: In order to un-
derstand the real-world impact of our design, we patched our
proposed WAM mechanism to Android-MOD and sent invita-
tions to the original 30,000 opt-in users to participate in our
performance evaluation. This time, nearly 14,000 users opted
in by installing the patched Android-MOD. The performance
evaluation also lasted for three weeks (March 1st-21st, 2019).
We observe that our design reduces 32% of the ANR events
and 47% of the SNR events per phone. Furthermore, we use
the automated analysis procedure described in Section II-C to
analyze the collected logs of the ANR and SNR events after our
patch is deployed. We find that almost all (>99%) of the ANR
and SNR events caused by WAM have been avoided.

We also evaluate the effect on data write speed through bench-
marks (as described in Section IV-B). As shown in Fig. 9, with
practical WAM, the random (sequential) write speed decreases
by an average of merely 2% (3%). Given its effectiveness, our
design has been incorporated into five stock Android builds by
Xiaomi since May 2019. It is now benefiting ~20M Android
users every day. Other vendors (e.g., Huawei and Honor) have
also adopted the approach to benefit their users since the release
of the patched Android-MOD. We are also working with Google
to integrate the design into vanilla Android.

V. RELATED WORK

Diagnosing Poor Responsiveness of Mobile Apps: Prior work
has proposed approaches to detect and mitigate performance
issues of mobile apps. First, some work utilizes dynamic ap-
proaches such as test amplification [40] and resource amplifi-
cation [41] to study the runtime behavior of mobile apps. Sec-
ond, researchers have employed static code analysis to pinpoint
buggy code patterns such as a lack of timeout handling [42]
and blocking operations in UI threads [43]. Compared to the
above work, our study conducts controlled benchmarking and
large-scale measurement of Android poor responsiveness. We
reveal that, for example, the top reason of SNR/ANR is the
inefficient WAM design in Android.

I/0 Optimization for Mobile Storage: A number of I/O opti-
mizations have been proposed for mobile storage [44], [45], [46].
For example, Jeong et al. [46] propose a number of I/O stack
optimizations specialized for smartphone storage. Our work,
instead, strives to address the shortcoming of Android’s WAM
implementation in a compatible and practical manner. Therefore,
we choose to improve Android’s existing batched WAM instead
of completely replacing file system components. Our solution
only requires small changes to the current Android OS, and has
been well adopted by multiple stock Android systems.

VI. CONCLUSION

This paper presents our experiences in understanding and
combating poor responsiveness events including SR/FF and
ANR/SNR in Android-based smartphone systems. Despite their
disruptions to mobile user experiences, these events are not well
measured and analyzed. Our study fills the above critical gap

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

by complementarily combining controlled benchmarking on di-
verse devices and large-scale crowd-sourced measurement with
around 30,000 opt-in users. We utilize lightweight kernel tracing
and continuous monitoring infrastructure to collect fine-grained
system-level data that capture every poor responsiveness event
on studied devices. We then build automatic analysis schemes
to infer the root causes of the observed events. The measure-
ment and analysis help us understand poor responsiveness “in
the wild”. Most importantly, we develop practical solutions to
mitigate the critical root causes of both SR/FF and ANR/SNR,
which have yielded real-world impacts.

REFERENCES
[1] Android.org, “The slow rendering of android,” Nov. 2019. [Online]. Avail-
able: https://developer.android.com/topic/performance/vitals/render
Android.org, “Keeping your android app responsive,” Nov. 2019. [Online].
Auvailable: https://developer.android.com/training/articles/perf-anr
Android.org, “The source code of android watchdog,” Nov. 2019. [Online].
Available: https://android.googlesource.com/platform/frameworks/base.
git/+/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
Android.org, “Dedicated RenderThread for UI rendering tasks,”
Nov. 2022. [Online]. Available: https://developer.android.com/about/
versions/lollipop.html#Material
Android.org, “V-Sync timing for synchronizing CPU and GPU tasks,”
Nov. 2019. [Online]. Available: https://developer.android.com/about/
versions/jelly-bean#android-4.1
Android.org, “Executing UI changes on main thread,” Nov. 2022. [On-
line]. Available: https://developer.android.com/reference/android/app/
Activity#runOnUiThread(java.lang. Runnable)
Q. Yang et al., “Mobile gaming on personal computers with direct android
emulation,” in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw., 2019,
pp. 1-15.
S. Yang, D. Yan, and A. Rounteyv, “Testing for poor responsiveness in an-
droid applications,” in Proc. IEEE Ist Int. Workshop Eng. Mobile-Enabled
Syst., 2013, pp. 1-6.
Android.org, “Android ftrace/atrace,” Nov. 2019. [Online]. Available:
https://source.android.com/devices/tech/debug/ftrace
Android.org, “Reduce overdraw,” Nov. 2019. [Online]. Available: https:
//developer.android.com/topic/performance/rendering/overdraw
J. D. Foley et al., Computer Graphics: Principles and Practice. Boston,
MA, USA: Addison-Wesley, 1996.
E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM
Comput. Surveys, vol. 3, no. 2, pp. 67-78, 1971.
L. Fan et al., “Large-scale analysis of framework-specific exceptions in
android apps,” in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng., 2018,
pp. 408—419.
Y. Lu, J. Shu, and W. Zheng, “Extending the lifetime of flash-based storage
through reducing write amplification from file systems,” in Proc. 11th
USENIX Conf. File Storage Technol., 2013, pp. 257-270.
Android.org, “Android layout inspector,” Nov. 2019. [Online]. Available:
https://developer.android.com/studio/debug/layout-inspector
Xiaomi.com, “Xiaomi MIUL” Nov. 2019. [Online]. Available: https://en.
miui.com/
Samsung.com, “Samsung One UI 2.0,” Nov. 2019. [Online]. Available:
https://www.samsung.com/global/galaxy/apps/one-ui/
Oneplus.com, “Oneplus OxygenOS,” Nov. 2019. [Online]. Available:
https://www.oneplus.com/oxygenos
Motorola.com, “Motorola android system,” Nov. 2019. [Online]. Avail-
able: https://www.motorola.com/us/software-and-apps/android
Android.org, “Android compatibility test suite,” Nov. 2019. [Online].
Available: https://source.android.com/docs/compatibility/cts
Android.org, “UI automator,” Nov. 2019. [Online]. Available: https:/
developer.android.com/training/testing/ui-automator
Alexa.com, “Alexa traffic ranking for websites,” 2019. [Online]. Available:
https://www.alexa.com/
P. Greenhalgh, “big. LITTLE processing with ARM Cortex-A15 & Cortex-
A7.” ARM White Paper, vol. 17, 2011.
P. Jaccard, “The distribution of the flora in the alpine zone,” New phytol-
ogist, vol. 11, no. 2, pp. 37-50, 1912.
G. Salton, A. Wong, and C.-S. Yang, “A vector space model for automatic
indexing,” ACM Commun., vol. 18, no. 11, pp. 613-620, 1975.

(2]
(3]

(4]

(5]

(6]

(71

(8]

[91
[10]
[11]
[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]
[24]

[25]

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

https://developer.android.com/topic/performance/vitals/render
https://developer.android.com/training/articles/perf-anr
https://android.googlesource.com/platform/frameworks/base.git/protect $
elax +$/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://android.googlesource.com/platform/frameworks/base.git/protect $
elax +$/android-4.3_r2.1/services/java/com/android/server/Watchdog.java
https://developer.android.com/about/versions/lollipop.html#Material
https://developer.android.com/about/versions/lollipop.html#Material
https://developer.android.com/about/versions/jelly-bean#android-4.1
https://developer.android.com/about/versions/jelly-bean#android-4.1
https://developer.android.com/reference/android/app/Activity#runOnUiThread(java.lang.Runnable)
https://developer.android.com/reference/android/app/Activity#runOnUiThread(java.lang.Runnable)
https://source.android.com/devices/tech/debug/ftrace
https://developer.android.com/topic/performance/rendering/overdraw
https://developer.android.com/topic/performance/rendering/overdraw
https://developer.android.com/studio/debug/layout-inspector
https://en.miui.com/
https://en.miui.com/
https://www.samsung.com/global/galaxy/apps/one-ui/
https://www.oneplus.com/oxygenos
https://www.motorola.com/us/software-and-apps/android
https://source.android.com/docs/compatibility/cts
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://www.alexa.com/

LIN et al.: AGING OR GLITCHING? WHAT LEADS TO POOR ANDROID RESPONSIVENESS AND WHAT CAN WE DO ABOUT IT? 1533

[26]
[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A. Singhal et al., “Modern information retrieval: A brief overview,” [EEE
Data Eng. Bull., vol. 24, no. 4, pp. 35-43, Apr. 2001.

J. Lee Rodgers and W. A. Nicewander, “Thirteen ways to look at the
correlation coefficient,” ASA Amer. Statistician, vol. 42, pp. 59—-66, 1988.
Samsung.com, “Performance of samsung galaxy S10,” Nov. 2019.
[Online]. Available: https://www.samsung.com/us/mobile/galaxy-s10/
performance/

Oneplus.com, “Overview of OnePlus 6T,” Nov. 2019. [Online]. Available:
https://www.oneplus.com/6t?from=head

Oppo.com, “Overview of OPPO Reno Z,” Nov. 2019. [Online]. Available:
https://www.oppo.com/ae/smartphone-reno-z/

Android.org, “Help optimize both memory use and power consumption
by background optimizations,” Nov. 2019. [Online]. Available: https:/
developer.android.com/topic/performance/background-optimization
Android.org, “Improving app performance with ART optimizing profiles
in the cloud,” Nov. 2019. [Online]. Available: https://android-developers.
googleblog.com/2019/04/improving-app-performance-with-art.html

D. M. Powers, “Applications and explanations of Zipf’s law,” in Proc.
Joint Conf. New Methods Lang. Process. Comput. Natural Lang. Learn.,
1998, pp. 151-160.

N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed., vol. 326.
New York, NY, USA: Wiley, 1998.

Y. Luo et al., “Hubble: Performance debugging with in-production, just-
in-time method tracing on android,” in Proc. USENIX Symp. Operating
Syst. Des. Implementation, 2022, pp. 787-803.

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write amplifi-
cation analysis in flash-based solid state drives,” in Proc. Israeli Exp. Syst.
Conf., 2009, Art. no. 10.

Redhat.org, “Write amplification mitigation,” Nov. 2019. [Online].
Available: https://access.redhat.com/documentation/en-US/Red_Hat_
Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html
K. Lee and Y. Won, “Smart layers and dumb result: IO characterization of
an android-based smartphone,” in Proc. 10th ACM Int. Conf. Embedded
Softw., 2012, pp. 23-32.

D. Jeong, Y. Lee, and J.-S. Kim, “Boosting quasi-asynchronous I/O for
better responsiveness in mobile devices,” in Proc. 13th USENIX Conf.
File Storage Technol., 2015, pp. 191-202.

P. Zhang and S. Elbaum, “Amplifying tests to validate exception handling
code,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 595-605.

Y. Wang and A. Rountev, “Profiling the responsiveness of android appli-
cations via automated resource amplification,” in Proc. IEEE/ACM Int.
Conf. Mobile Softw. Eng. Syst., 2016, pp. 48-58.

X. Jin, P. Huang, T. Xu, and Y. Zhou, “NChecker: Saving mobile app
developers from network disruptions,” in Proc. ACM 11th Eur. Conf.
Comput. Syst., 2016, Art. no. 22.

T. Ongkosit and S. Takada, “Responsiveness analysis tool for android
application,” in Proc. ACM 2nd Int. Workshop Softw. Develop. Lifecycle
Mobile, 2014, pp. 1-4.

S. Park and K. Shen, “FIOS: A fair, efficient flash I/O scheduler,” in Proc.
10th USENIX Conf. File Storage Technol., 2012, pp. 13-13.

D. T. Nguyen, “Improving smartphone responsiveness through I/O opti-
mizations,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.:
Adjunct Pub., 2014, pp. 337-342.

S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O stack optimiza-
tion for smartphones,” in Proc. USENIX Conf. Annu. Tech. Conf., 2013,
pp. 309-320.

M. Li et al., “Experience: Aging or glitching? Why does android stop
responding and what can we do about it?,” in Proc. ACM MobiCom, 2020,
pp. 1-11.

Y. Li et al., “A nationwide study on cellular reliability: Measurement,
analysis, and enhancements,” in Proc. ACM SIGCOMM 2021 Conf., 2021,
pp- 597-609.

G. Di et al., “Trinity: High-performance mobile emulation through graph-
ics projection,” in Proc. 16th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2022, pp. 285-301.

Hao Lin (Student Member, IEEE) received the BS de-
gree from the School of Software, Tsinghua Univer-
sity, in 2020. He is currently working towards the PhD

—~ -~ degree with the School of Software, Tsinghua Uni-
o L versity, Beijing, China. His research interests mainly
W include operating systems and mobile networks.
w y

Cai Liu received the BS degree from the School
of Computer and Information, Hohai University, in
2005. He is a senior system optimization engineer
with Xiaomi Technology Co. LTD. Prior to joining
Xiaomi, he worked with Motorola, ZTE, and Sam-
sung. He is expert at operating system.

Zhenhua Li (Senior Member, IEEE) received the
BSc and MSc degrees in computer science and tech-
nology from Nanjing University, in 2005 and 2008,
respectively, and the PhD degree from Peking Uni-
versity, in 2013. He is a tenured associate professor
with the School of Software, Tsinghua University. His
research areas cover mobile networking/emulation
and cloud computing/storage.

Feng Qian (Senior Member, IEEE) received the BS
degree from Shanghai Jiao Tong University, and the
PhD degree from the University of Michigan. He is
currently an associate professor with the Computer
Science and Engineering Department, University of
Minnesota - Twin Cities. Prior to joining UMN,
he worked with AT&T Labs and Indiana Univer-
sity. His research interests include cover mobile sys-
tems, AR/VR, mobile networking, wearable com-
puting, real-world system measurements, and system
security.

Mingliang Li received the BS degree in computer sci-
ence from Nanjing University. He is currently work-
ing towards the MEng degree in software engineering
with the School of Software, Tsinghua University,
Beijing, China. Prior to joining Tsinghua University
(THU) in 2019, he worked with Xiaomi Technology
Co. LTD. for operating system optimization.

Ping Xiong received the BS and MS degrees from
Wauhan University. He is now a senior software en-
gineer with Xiaomi Technology Co. LTD. He works
in mobile software development and storage system
optimization.

Yunhao Liu (Fellow, IEEE) received the BS degree
from Automation Department, Tsinghua University,
and the MS and PhD degrees in computer science
and engineering from Michigan State University. He
is now a full professor and the dean with Global In-
novation Exchange (GIX), Tsinghua University. His
research interests include sensor network and IoT,
localization, RFID, distributed systems, and cloud
computing.

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:39 UTC from IEEE Xplore. Restrictions apply.

https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://www.samsung.com/us/mobile/galaxy-s10/performance/
https://www.oneplus.com/6t{?}from=head
https://www.oppo.com/ae/smartphone-reno-z/
https://developer.android.com/topic/performance/background-optimization
https://developer.android.com/topic/performance/background-optimization
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://android-developers.googleblog.com/2019/04/improving-app-performance-with-art.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch02s04.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

