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Abstract— Video streaming today accounts for up to 55%
of mobile traffic. In this paper, we explore streaming videos
encoded using scalable video coding (SVC) scheme over highly
variable bandwidth conditions, such as cellular networks. SVC’s
unique encoding scheme allows the quality of a video chunk
to change incrementally, making it more flexible and adaptive
to challenging network conditions compared to other encoding
schemes. Our contribution is threefold. First, we formulate the
quality decisions of video chunks constrained by the available
bandwidth, the playback buffer, and the chunk deadlines as
an optimization problem. The objective is to optimize a novel
quality-of-experience metric that models a combination of the
three objectives of minimizing the stall/skip duration of the video,
maximizing the playback quality of every chunk, and minimizing
the number of quality switches. Second, we develop layered bin
packing (LBP) adaptation algorithm, a novel algorithm that
solves the proposed optimization problem. Moreover, we show
that LBP achieves the optimal solution of the proposed opti-
mization problem with linear complexity in the number of video
chunks. Third, we propose an online algorithm (online LBP)
where several challenges are addressed, including handling band-
width prediction errors and short prediction duration. Extensive
simulations with real bandwidth traces of public datasets reveal
the robustness of our scheme and demonstrate its significant
performance improvement as compared with the state-of-the-
art SVC streaming algorithms. The proposed algorithm is also
implemented on a TCP/IP emulation test bed with real LTE
bandwidth traces, and the emulation confirms the simulation
results and validates that the algorithm can be implemented and
deployed on today’s mobile devices.

Index Terms— Video streaming, adaptive bit rate streaming,
scalable video coding, combinatorial optimization, bandwidth
prediction.

I. INTRODUCTION

MOBILE video has emerged as a dominant contribu-
tor to cellular traffic. It already accounts for around

40 − 55 percent of all cellular traffic and is forecast to grow
by around 55 percent annually through 2021 [1]. While its
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Fig. 1. AVC vs SVC Encoding.

popularity is on the rise, delivering high quality streaming
video over cellular networks remains extremely challenging.
In particular, the video quality under challenging conditions
such as mobility and poor wireless channel is sometimes
unacceptably poor. Almost every viewer at some point in time
can relate to experiences of choppy videos, stalls, etc.

Not surprisingly, a lot of attention from both research and
industry in the past decade has focused on the development of
adaptive streaming techniques for video on demand that can
dynamically adjust the quality of the video being streamed to
the changes in network conditions. Such a scheme has 2 main
components:
• Content Encoding: On the server side, the video is divided

into multiple chunks (segments), each containing data corre-
sponding to some playback time (e.g., 4 sec), and then each
chunk is encoded at multiple resolutions/quality levels (each
with different bandwidth requirements).
• Adaptive Playback: During playtime, an entity (typically

the player) dynamically switches between the different avail-
able quality levels as it requests the video over the network.
The adaptation is based on many factors such as the network
condition, its variability, and the client buffer occupancy etc..
This results in a viewing experience where different chunks
of the video might be streamed at different quality levels.

In the predominant adaptive coding technique in use today,
each video chunk is stored into L independent encoding
versions, as an example of such a technique is H.264/
MPEG-4 AVC (Advanced Video Coding) which was standard-
ized in 2003 [2]. During playback when fetching a chunk,
the Adaptive Bit Rate (ABR) streaming technique such as
MPEG-DASH [3] (Distributed Dynamic Streaming over
HTTP) needs to select one out of the L versions based on its
judgement of the network condition and other aforementioned
factors.

An alternative encoding scheme is Scalable Video Cod-
ing (SVC) which was standardized in 2007 as an extension
to H.264 [4]. In SVC, a chunk is encoded into ordered layers:
one base layer (Layer 0) with the lowest playable quality, and
multiple enhancement layers (Layer i >0) that further improve
the chunk quality based on layer i − 1. When downloading
a chunk, an Adaptive-SVC streaming logic must consider
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Fig. 2. Motivating example: network condition prediction can improve
streaming quality under mobility.

fetching all layers from 0 to i− 1 if layer i is decided to be
fetched. In contrast, in AVC, different versions (i.e., qualities)
of chunks are independent, as illustrated in Fig. 1.

There are three typical modes of scalability, namely tem-
poral (frame rate), spatial (spatial resolution), and quality
(fidelity, or signal-to-noise ratio). The encoding however has
an additional encoding overhead, which depends on the mode
of scalability. For example [5] showed that there is mini-
mal or no loss in coding efficiency using temporal scalabil-
ity. Temporal scalability is also backward compatible with
existing H.264 decoders, and is simple to implement as
compared to other forms of scalability. However, there are
some limitations for using temporal scalability such as being
visually un-pleasing for low base layer rates which motivate
the use of other scalability modes that require more overhead.
Appendix A in the Supplementary Material describes some
common scenarios where Adaptive-SVC streaming can be
beneficial.

To motivate our problem, imagine a scenario where a
mobile user starts a trip from point A to point B (see Fig. 2,
anonymized with randomly chosen locations). As the user
enters the destination location to the GPS application, she gets
the route information, and the video player obtains the esti-
mates of the bandwidth availability along the chosen path. The
bandwidth estimation can be obtained using crowd-sourced
information from measurements of other users who travelled
the same route recently as we will show in Appendix B in the
Supplementary Material. We will demonstrate that access to
such information can help the player take significantly better
informed decisions in its adaptation logic. For example, if the
player is aware that it is about to traverse through a region with
low bandwidth, it can switch to fetching the video at a lower
quality to minimize the possibility of stalling. Another method
to predict the future bandwidth that has been widely used in
the literature is the harmonic mean based prediction [6], [7],
which uses the harmonic mean of the past few seconds to
predict the bandwidth for the next few seconds.

In this paper, we first theoretically formulate the problem of
adaptive-SVC video streaming with the knowledge of future
bandwidth. We consider two streaming schemes: skip based
and no-skip based streaming. The former is usually for real-
time streaming in which there is a playback deadline for each
of the chunks, and chunks not received by their respective
deadlines are skipped. For no-skip based streaming, if a chunk
cannot be downloaded by its deadline, it will not be skipped;
instead, a stall (re-buffering) will incur, i.e., the video will
pause until the chunk is fully downloaded. In both variants,

the goal of the proposed scheduling algorithm is to determine
up to which layer we need to fetch for each chunk (except
for those skipped in realtime streaming), such that the overall
quality-of-experience (QoE) is maximized and the number of
stalls or skipped chunks is minimized. The key contributions
of the paper are described as follows.
• A novel metric of QoE is proposed for SVC streaming in

both the scenarios (skip and no-skip). The metric is a weighted
sum of the layer sizes for each chunk. Since the user’s
QoE is concave in the playback rate [8], the higher layers
contribute lower to the QoE as compared to the lower layers.
Thus, the weights decrease with the layer index modeling the
diminishing returns for higher layers.
•We show that even though the proposed problem is a non-

convex optimization problem with integer constraints, it can
be solved optimally using an algorithm with a complexity that
is linear in the number of chunks. The proposed algorithm,
“Layered Bin Packing” (LBP), proceeds layer-by-layer, tries
to efficiently bin-pack all chunks at a layer and provides
maximum bandwidth to the next layer’s decisions given the
decisions of the lower layers of all the chunks.
• We propose an online robust adaptive-SVC streaming

algorithm (Online LBP). This algorithm exploits the prediction
of the network bandwidth for some time ahead, solves the
proposed optimization problem to find the quality decisions
for W chunks ahead, and re-runs every α seconds to adjust to
prediction errors and find quality decisions for more chunks
ahead.
• We considered two techniques of bandwidth prediction.

First, harmonic mean based prediction which was widely used
in the literature [6], [7] where the harmonic mean of the past
few seconds is used to predict the bandwidth for few seconds
ahead (typically 20 seconds ahead). Second, crowd-sourced
erroneous bandwidth prediction where bandwidth profiles
experienced by people travelled the same road recently are
used to predict the bandwidth for the current user.
• Trace-driven simulation using datasets collected from

commercial cellular networks demonstrates that our approach
is robust to prediction errors, and works well with short
prediction windows (e.g., 20 seconds). The proposed approach
is compared with a number of adaptation strategies including
slope based SVC streaming [9], Microsoft’s smooth streaming
algorithm (adapted to streaming SVC content), and Net-
flix’s buffer-based streaming algorithm (BBA-0) [10] (adapted
to SVC).
• The results demonstrate that our algorithm outper-

forms the state-of-the-art by improving key quality-of-
experience (QoE) metrics such as the playback quality,
the number of layer switches, and the number of skips or stalls.
• In addition to the simulations, we built a testbed that

streams synthetic SVC content over TCP/IP networks using
real LTE traces. We then implemented our streaming algorithm
on the testbed and evaluated it under challenging network
conditions. The emulation outcome is very close to the simu-
lation results and incurs very low run-time overhead, further
confirming that our algorithm can be practically implemented
and deployed on today’s mobile devices.

II. RELATED WORK

Video streaming has received a lot of attention from both
the academia and industry in the past decade. We summarize
some of the efforts devoted to streaming technologies that are
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based on Adaptive Bit Rate (ABR), Adaptive-SVC, and that
rely on network bandwidth prediction.

ABR Streaming: The recent adoption of the open standards
MPEG-DASH [3] has made ABR streaming the most pop-
ular video streaming solution. Commercial systems such as
Apple’s HLS [11], Microsoft’s Smooth Streaming [12], and
Adobe’s HDS [13] are all ABR streaming algorithms. In recent
studies, researchers have investigated various approaches for
making streaming decisions, for example, by using control
theory [6], [14], Markov Decision Process [15], machine
learning [16], client buffer information [10], and data-driven
techniques [17]–[19]. In this work, we use an optimization-
based approach to design novel streaming algorithms for
Adaptive-SVC streaming whose encoding scheme is very
different from that of used for ABR streaming.

Adaptive-SVC Streaming: SVC encoding received the
final approval to be standardized as an amendment of the
H.264/MPEG-4 standard in 2007 [4]. Although much less
academic research has been conducted on Adaptive SVC
streaming compared to ABR streaming, there exist some
studies of using SVC encoded videos to adapt video playback
quality to network conditions. A prior study [20] proposed
a server-based quality adaptation mechanism that performs
coarse-grained rate adaptation by adding or dropping layers
of a video stream. While this mechanism was designed to
be used over UDP with a TCP-friendly rate control, more
recent research has explored techniques that use Adaptve-
SVC streaming over HTTP. A study [21] compared SVC
with regular H.264 encoding (H.264/MPEG). Their results
suggest that SVC outperforms H.264/AVC for scenarios such
as VoD and IPTV through more effective rate adaptation. The
work [22] published the first dataset and toolchain for SVC.
Some prior work [23], [24] proposed new rate adaptation
algorithms for Adaptive-SVC streaming that prefetch future
base layers and backfill current enhancement layers. Our work
differs from the above in that we develop low-complexity
algorithms that explicitly and strategically leverage the future
knowledge of network conditions for better rate adaptation.

Streaming That Exploits Network Condition Prediction: The
knowledge of the future network conditions can play an impor-
tant role in Internet video streaming. A prior study [25] investi-
gated the performance gap between state-of-the-art streaming
approaches and the approach with accurate bandwidth pre-
diction for ABR. The results indicate that prediction brings
additional performance boosts for ABR, and thus motivates
our study. Prior studies [26], [27] proposed ABR streaming
mechanisms that use pre-collected geo-tagged network band-
width profiles. Our work also exploits the predictable nature
of future network conditions, but provides an optimization
based framework in the context of SVC-based encoding.
In Appendix B in the Supplementary Material, we show more
evidence of network predictability in the context of cellular
networks. We note that even though there is a broad interest
in the bitrate adaptation algorithms, a principled understanding
of algorithms is limited. One of the key fundamental approachs
to formulate the optimization problem was given in [6].
However, the proposed algorithm in [6] is computationally
hard and thus a lookup table is hard coded based on solving
the optimization problem offline for a given set of encoding
rates. To make the table size small, the offline solution is
divided in coarse bins thus giving an approximate solution.
[19] proposed crowd-source based bandwidth prediction and
used the streaming algorithm proposed in [6] to make the bit

rate decision per video’s chunk. Moreover, [28] gives feasible
solution by relaxing the integer constraints in the streaming
optimization problem. Further, [29] considers prediction-based
formulation while giving heuristics to solve the problem.

In contrast to [6], we propose an online algorithm that
solves the optimization problem optimally in linear complexity
and can run on the fly. Thus, the proposed approach does
not need to hard code information for different encoding
rates. Moreover, the offline algorithm is shown to be also
optimal and is solvable in linear time complexity. Therefore,
we provide a theoretic upper bound to our formulation. Finally,
we do not relax any of the constraint, we consider both
skip and no-skip based streaming scenarios, and we show
optimality in both cases.

III. SYSTEM MODEL

We consider the problem of adaptively streaming an SVC
video. An SVC encoded video is divided into C chunks
(segments) and stored at a server. Every chunk is of length L
seconds, and is encoded in Base Layer (BL) with rate r0 and
N enhancement layers (E1, · · · , EN ) with rates r1, · · · , rN

∈ R � {0, r0, r1, · · · , rN}. We assume that each layer is
encoded at constant bit rate (CBR). In other words, all chunks
have the same nth layer size. Let the size of the n-th layer of
chunk i be Zn,i ∈ Zn � {0, Yn}, where Yn = L × rn. Let
the size of a chunk that is delivered at the n-th layer quality
be Xn(i), where Xn(i) =

∑n
m=0 Ym.

Let zn(i, j) be the size of layer n of chunk i that is
fetched at time slot j, and x(i, j) be what is fetched of all
layers of chunk i at time slot j, i.e., x(i, j) =

∑N
n=0 zn(i, j).

Further, let B(j) be the available bandwidth at time j. For the
offline algorithm, we assume the bandwidth can be perfectly
predicted. Also let s be the startup delay and Bm be the
playback buffer size in time units (i.e., the playout buffer
can hold up to Bm seconds of video content). We assume
all time units are discrete and the discretization time unit
is assumed to be 1 second (which can be scaled based on
the time granularity). Since the chunk size is L seconds,
the buffer occupancy increases by L seconds when chunk i
starts downloading (we reserve the buffer as soon as the chunk
start downloading).

The optimization framework can run at either the
client or the server side as long as the required inputs are
available. A setup where the algorithm is run at the client
side is depicted in Fig. 3. The algorithm takes as an input,
the predicted bandwidth for the time corresponding to the
next C chunks, layer sizes (Y0, . . . , YN ), startup delay (s),
and maximum buffer size Bm, and outputs the layers that
can be requested for the next C chunks (Zn,i, i ∈ {1, ..C},
n ∈ {0, . . . , N}). The video chunks will be fetched according
to the requested policy and in order. For the online algorithm,
this process repeats every α seconds, and decisions can be
changed on fly since the proposed algorithm adapts to the
prediction error.

We consider two scenarios: skip based streaming and no-
skip based streaming. For skip streaming, the video is played
with an initial start-up (i.e., buffering) delay s seconds and
there is a playback deadline for each of the chunks where
chunk i need to be downloaded by time deadline(i). Chunks
not received by their respective deadlines are skipped. For
no-skip streaming, it also has start-up delay. However, if a
chunk cannot be downloaded by its deadline, it will not
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Fig. 3. System Model.

be skipped. Instead, a stall (i.e., rebuffering) will occur i.e.,
the video will pause until the chunk is fully downloaded.
In both scenarios, the goal of the scheduling algorithm to be
detailed next is to determine up to which layer we need to
fetch for each chunk (except for those skipped), such that the
number of stalls or skipped chunks is minimized as the first
priority, the overall playback bitrate is maximized as the next
priority, the number of quality switching between neighboring
chunks is minimized as the third priority. Similar to many
other studies on DASH video streaming [6], [29], [10], this
paper does not consider mean opinion score (MOS) metric
since obtaining MOS ratings are video-dependent and are
time-consuming and expensive as they require recruitment of
human assessors. A table of notations used in this paper is
included in Appendix C in the Supplementary Material.

IV. ADAPTIVE SVC STREAMING

We now detail the adaptive SVC streaming algorithms.
We describe the basic formulation for skip-based streaming
in §IV-A. We then identify the particular problem structure
in our formulation and strategically leverage that to design
a linear-time solution in §IV-B and §IV-C. We prove the
optimality of our solution in §IV-D. An example of the algo-
rithm is given in Appendix E in the Supplementary Material,
and detailed proofs are in Appendix F in the Supplementary
Material. We then extend the basic scheme to its online version
in §IV-E and to no-skip based streaming in §IV-F (with
detailed algorithm in Appendix I in the Supplementary Mate-
rial, example in Appendix J in the Supplementary Material,
and proofs in Appendix K in the Supplementary Material).

A. Skip Based Streaming: Offline Problem Formulation
Given the settings described in §III, we first formulate an

offline optimization problem. It jointly (i) minimizes the num-
ber of skipped chunks, (ii) maximizes the average playback
rate of the video, and (iii) minimizes the quality changes
between the neighboring chunks to ensure the perceived qual-
ity is smooth. We give a higher priority to (i) as compared
to (ii), since skips cause more quality-of-experience (QoE)
degradation compared to playing back at a lower quality [6].
Further, (iii) is the lowest priority among the three objectives.
The proposed formulation maximizes a weighted sum of the
layer sizes. The weights are along two directions. The first is
across time where the layers of the later chunks are weighed

higher using a factor β ≥ 1. The second is across the layers
where fetching the n-th layer of a chunk achieves a utility
that is 0 < γ < 1 times the utility that is achieved by
fetching the (n − 1)-th layer. Thus, the objective is given as∑N

n=0 γn
∑C

i=1 βiZn,i. We further assume that

γara >

N∑

k=a+1

γkrk

C∑

i=1

βi for a = 0, · · · , N − 1. (1)

This choice of γ implies that all the higher layers than layer
a have lower utility than a chunk at layer a for all a. For
a = 0, this implies that all the enhancement layers have less
utility than a chunk at the base layer. Thus, the avoidance
of skips is the highest priority. The use of γ helps prioritize
lower layers over higher layers and models concavity of user
QoE with playback rate. Due to this weight, the proposed
algorithm will avoid skip as the first priority and will not use
the bandwidth to fetch higher layers at the expense of base
layer. Similar happens at the higher layers. The combination
of the two weights help minimize multi-layer quality switches
between neighboring chunks since the use of γ discourages
getting higher layers at the expense of lower layers. We assume
β = 1+� where � > 0 is very small number (e.g., 0.001). The
use of β = 1+� helps in three aspects, (i) makes optimal layer
decisions for different chunks unique, (ii) better adaptability
to the bandwidth fluctuations by preferring fetching higher
layers of later chunks, and (iii) reduction of quality variations.
Indeed, if the playback buffer is not limited, there will ideally
be a few jumps of quality increases and no quality decrease in
the playback of the chunks using this metric. An example to
further explain the objective and the above mentioned points
for γ and β is provided in Appendix D in the Supplementary
Material.

Overall, the SVC layer scheduling problem with the knowl-
edge of future bandwidth information can be formulated as
follows, where I(.) is an indicator function which has the
value 1 if inside expressions holds and zero otherwise.

Maximize:

(
N∑

n=0

γn
C∑

i=1

βiZn,i

)

(2)

subject to
(i−1)L+s∑

j=1

zn(i, j) = Zn,i, ∀i, n (3)

Zn,i ≤ Yn

Yn−1
Zn−1,i, ∀i, n > 0 (4)

N∑

n=0

C∑

i=1

zn(i, j) ≤ B(j)

∀j, (5)
∑

i,(i−1)L+s>t

I

(
t∑

j=1

( N∑

n=0

zn(i, j)
)

> 0

)

L ≤ Bm ∀t (6)
zn(i, j) ≥ 0 ∀i (7)
zn(i, j) = 0 ∀i, j > (i− 1)L + s (8)
Zn,i ∈ Zn ∀i, n (9)

Variables: zn(i, j), Zn,i ∀i = 1, · · · , C,

j = 1, · · · , (C − 1)L + s, n = 0, · · · , N
Constraints (3) and (9) ensure that what is fetched for any

layer n of a chunk i over all times to be either zero or the
n-th layer size. The decoder constraint (4) enforces that the
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nth layer of a chunk cannot be fetched if the lower layer
is not fetched since this layer will not be decoded because
of the layer dependency. (5) imposes the available bandwidth
constraint at each time slot j and (6) imposes the playback
buffer constraint so that the content in the buffer at any
time does not exceed the buffer capacity (given in time
units) Bm. Constraint (7) imposes the non-negativity of the
chunk download sizes, and (8) enforces not to fetch a chunk
after its deadline. The deadline of chunk i ∈ {1, · · · , C} is
deadline(i) = (i− 1)L + s.

B. Optimization Problem Structure
The problem defined in §IV-A has integer constraints and

has an indicator function in a constraint. This problem is in
the class of combinatorial optimization [30]. Some of the
problems in this class are the Knapsack problem, Cutting
stock problem, Bin packing problem, and Travelling salesman
problem. These problems are all known to be NP hard. Very
limited problems in this class of combinatorial optimization
are known to be solvable in polynomial time. Some typical
examples being shortest path trees, flows and circulations,
spanning trees, matching, and matroid problems. The well
known Knapsack problem optimizes a linear function with a
single linear constraint ( for integer variables), and is known
to be NP hard. The optimization problem defined in this paper
has multiple constraints, and does not lie in any class of known
combinatorial problems that are polynomially-time solvable to
the best of our knowledge. In this paper, we will show that this
combinatorial optimization problem can be solved optimally
in polynomial time.

Algorithm 1 Layered Bin Packing Adaptive Algorithm

1: Input: Yn, deadline(i), s, Bm, C, B(j): available band-
width at time j,

2: Output: X(i)∀i: The maximum size in which chunk i can
be fetched, In: set contains the indices of the chunks that
can be fetched up to layer n quality.

3: Initialization:
4: Xn =

∑n
m=0 Ym cumulative size up to layer n

5: c(j) =
∑j

j′=1 B(j′) cumulative bandwidth up to time j, ∀j
6: t(i) = 0, ∀i, first time slot chunk i can be fetched
7: a(i) = 0, ∀i, lower layer decision of fetched amount of

chunk i at its lower deadline time t(i)
8: e(j) = B(j), ∀j, remaining bandwidth at time j after all

non skipped chunk are fetched according to lower layer
size decisions

9: X(i) = 0, deadline(i) = (i− 1)L + s ∀i
10: bf(j) = 0, ∀j, buffer length at time j
11: For each layer, n = 0, · · · , N
12: [X, In] = backwardAlgo(B, X, Xn, C, L, deadline, Bm,

bf, t, c, a, e)
13: [t, a, e] = forwardAlgo(B, X, C, deadline, Bm, bf, In)

C. Optimal Linear-Time Solution

We now show the proposed problem in (2-9) can
be solved optimally with a complexity of O(CN). We
call our proposed algorithm “Layred Bin Packing Adaptive
Algorithm” (LBP), which is summarized in Algorithm 1.
At a high level, our algorithm works from the lowest

(i.e., the base) to the highest enhancement layer, and processes
each layer separately. It performs backward and forward
scans (explained below) at each layer given the decisions of
the previous layers.

Algorithm 2 Backward Algorithm
1: Input: B, X, Xn, C, L, deadline, Bm, bf, t, c, a, e
2: Output: X(i) size of chunk i, In: set contains chunks that

can be fetched in quality up to nth layer.
3: Initilization:
4: i = C, j = deadline(C)
5: initialize bf(j) to zeros ∀j.
6: while (j > 0 and i > 0) do
7: if j <= deadline(i) then
8: if (bf(deadline(i)) = Bm) then i = i− 1
9: if j is the first time to fetch chunk i from back then

10: if (t(i) = 0) then
11: rem1 = c(j)− c(1) + e(1), rem2 = rem1
12: else
13: rem2 = c(j)− c(t(i)), rem1 = rem2 + e(t(i)) +

a(i)
14: end if
15: if (rem1 < Xn(i)) then
16: if (X(i) > 0) then Xn(i) = X(i) else i = i− 1
17: else
18: if (rem2 < Xn(i)) and rem1 ≥ Xn(i)) then
19: e(t(i)) = e(t(i)) + rem1−Xn

20: end if
21: X(i) = Xn(i), In ← In ∪ i
22: end if
23: end if
24: fetched = min(B(j), Xn(i)), B(j) = B(j) −

fetched
25: Xn(i) = Xn(i)− fetched
26: if (Xn(i) > 0) then bf(j) = bf(j) + L
27: if (Xn(i) = 0) then i = i− 1
28: if (B(j) = 0) then j = j − 1
29: else
30: j = j − 1
31: end if
32: end while

Running the backward scan at the nth layer (Algorithm 2)
finds the maximum number of chunks that can be fetched
up to the nth layer quality given the decisions of the previous
layers. Then, running the forward scan (Algorithm 3) simulates
fetching chunks in sequence as early as possible, so the start
time of downloading chunk i (the lower deadline t(i)) is found.
Lower and Upper (t(i), deadline(i)) deadlines will be used
to find the next layer decisions (as explained below).

Backward Algorithm for Base Layer: Given the bandwidth
prediction, chunk deadlines, and the buffer size, the algorithm
simulates fetching the chunks at base layer quality starting
from the last towards the first chunk. The deadline of the
last chunk is the starting time slot of the backward algo-
rithm scan. The goal is to have chunks fetched closer to
their deadlines. For every chunk i, the backward algorithm
checks the bandwidth and the buffer; if there is enough
bandwidth and the buffer is not full, then chunk i is selected
to be fetched (line 18-22). The algorithm keeps checking this
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Algorithm 3 Forward Algorithm
1: Input: B, X, C, deadline, Bm, bf, In

2: Output: t(i): first time slot chunk i can be fetched (lower
deadline of chunk i), a(i), decision of fetched amount of
chunk i at its lower deadline time slot t(i), e(j), remaining
bandwidth at time j after all non skipped chunk are fetched
according to the decided layer size.

3: j = 1, k = 1
4: while j ≤ deadline(C) and k ≤ max(I0) (last chunk to

fetch) do
5: i = I(k)
6: if i = 0 then k = k + 1
7: if j ≤ deadline(i) then
8: if (bf(j) = Bm) then j = j + 1
9: fetched = min(B(j), X(i))

10: if j is the first time chunk i is fetched then
11: t(i) = j,
12: a(i) = fetched
13: end if
14: B(j) = B(j)− fetched
15: e(j) = B(j), X(i) = X(i)− fetched
16: if X(i) > 0 then bf(j) = bf(j) + L
17: if X(i) = 0 then k = k + 1
18: if B(j) = 0 then j = j + 1
19: else
20: k = k + 1
21: end if
22: end while

feasibility to select chunks to be fetched. If a chunk i′ is not
selected to be fetched, one of the following two scenarios
could have happened. The first scenario is the violation of
the buffer capacity, where selecting the chunk to be fetched
would violate the playback buffer constraint. The second is the
bandwidth constraint violation where the remaining available
bandwidth is not enough for fetching a chunk. This scenario
also means that the chunk could not be fetched by its deadline,
so it can also be called deadline violation.

For buffer capacity violation, we first note that, there could
be a chunk i′′ > i′ in which if it is skipped, chunk i′ can still
be fetched. However, the backward algorithm decides to skip
downloading chunk i′ (line 8). We note that since there is a
buffer capacity violation, one of the chunks must be skipped.
The reason of choosing to skip chunk i′ rather than a one with
higher index is that i′ is the closest to its deadline. Therefore,
i′ is not better candidate to the next layer than any of the
later ones. In the second case of deadline/bandwidth violation,
the backward algorithm decides to skip chunks up to i′ since
there is not enough bandwidth. As before, since equal number
of chunks need to be skipped anyway, skipping the earlier ones
is better because it helps in increasing the potential of getting
higher layers of the later chunks.

Forward Algorithm for Base Layer: The forward algorithm
takes the chunk size decisions from the Backward step which
provides the base layer size decision of every chunk i which is
either 0 or the BL size. Then, the forward algorithm simulates
fetching the chunks in sequence starting from the first one.
Chunks are fetched as early as possible with the deadline,
buffer, and the bandwidth constraints being considered. The

chunks that were not decided to be fetched by the Backward
Algorithm are skipped (any chunk i /∈ I0, line 6). The
forward algorithm provides the the earliest time slot when
chunk i can be fetched (t(i), line 10). This time is used as
a lower deadline on the time allowed to fetch chunk i when
the backward algorithm is run for the next layer. Therefore,
the backward size decisions of base layer of earlier chunks
can not be violated when the backward algorithm is re-run
for deciding the first enhancement layer sizes (E1 decisions).
Moreover, it provides the portion that can be fetched of chunk
i at its lower deadline t(i) (a(i), line 11) and the remaining
bandwidth at every time slot j after all non skipped chunk are
fetched (e(j), line 12).

Modifications for Higher Layers: The same backward and
forward steps are used for each layer given the backward-
forward decisions of the previous one on the chunk sizes and
lower deadlines. The key difference when the algorithm is run
for the enhancement layer decisions as compared to that for
the base layer is that the higher layer of the chunk is skipped
if the previous layer is not decided to be fetched. When
running the backward algorithm for E1 decisions, for every
chunk i, we consider the bandwidth starting from the lower
deadline of that chunk t(i), so previous layer decisions (base
layer decisions) of early chunks can’t be violated. The same
procedure is used to give higher layer decisions when all of
the lower layer decisions have already been made. An example
to illustrate the algorithm is given in Appendix J in the
Supplementary Material.

Complexity Analysis: The initialization clearly sums the
variables over time, and is at most O(C) complexity. At each
layer, a backward and a forward algorithm are performed.
Both the algorithms have a while loop, and within that,
each step is O(1). Thus, the complexity is dependent on
the number of times this loop happens. For the back-
ward algorithm, each loop decreases either i or j and
thus the number of times the while loop runs is at most
C + deadline(C) + 1. Similarly, the forward algorithm while
loop runs at most C + deadline(C) + 1 times. In order to
decrease the complexities, cumulative bandwidth for every
time slot t, r(t) is used to avoid summing over the bandwidth
in the backward and the forward loops.

Adaptation to ABR Streaming: We note that the proposed
algorithm selects quality levels for every chunk and can also
be used for ABR streaming. For a given set of available ABR
rates, the difference between the rates for the coded chunk at
quality level n + 1 and quality level n can be treated as the
nth layer SVC rate for all n.

D. Optimality of the Proposed Algorithm

In this subsection, we prove the optimality of Layered
Bin-Packing Adaptive Algorithm in solving the optimization
problem (2-9). We first note that it is enough to prove that
the algorithm is the best among any in-order scheduling algo-
rithm (that fetches chunks in order based on the deadlines).
This is because for any other feasible fetching algorithm,
we can convert it to an in-order fetching algorithm with the
same bandwidth utilizations for each chunk. Getting in-order
helps the buffer and other constraints. Thus, we can obtain the
same objective and can satisfy the constraints. The following
Lemma states that given the lower and upper deadlines ((t(i))
and deadline(i)) of every chunk i, the (n−1)th layer quality
decision, running the backward algorithm for the nth layer
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maximizes the number of chunks that can have their nth layer
fetched.

Lemma 1: Given size decisions up to (n − 1)th layer,
and lower and upper deadlines (t(i), and deadline(i)) for
every chunk i, the backward algorithm achieves the minimum
number of the nth layer skips as compared to any feasible
algorithm which fetches the same layers to every chunk up to
the layer n− 1.

Proof: Proof is provided in Appendix F in the Supple-
mentary Material. �
The above lemma shows that backward algorithm minimizes
the nth layer skips given the lower and upper deadlines of
every chunk. However, it does not tell us if that lower deadline
is optimal or not. The following proposition shows that for
any quality decisions, the forward algorithm finds the optimal
lower deadline on the fetching time of any chunk.

Proposition 1: if tf (i) is the earliest time to start fetching
chunk i using the forward algorithm (lower deadline), and
tx(i) is the earliest time to fetch it using any other in sequence
fetching algorithm, then the following holds true.

tf (i) ≤ tx(i).
The above proposition states that tf (i) is the lower deadline of
chunk i, so chunk i can’t be fetched earlier without violating
size decisions of the lower layers of earlier chunks. Therefore,
at any layer n, we are allowed to increase the chunk size
of chunk i as far as we can fully fetch it within the period
between its lower and upper deadlines. If increasing its size
to the n-th layer quality level requires us to start fetching it
before its lower deadline, then we should not consider fetching
the n-th layer of this chunk. Fetching the n-th layer of this
chunk in this case will affect the lower layer decisions and will
cause dropping lower layers of some earlier chunks. Since, our
objective prioritizes lower layers over higher layers (0 < γ < 1
and (1)), lower deadline must not be violated. As a simple
extension of Lemma 1, we can consider any β ≥ 1.

Lemma 2: Given optimal solution of layer sizes up to
the (n− 1)th layer, and lower and upper deadlines (t(i), and
deadline(i)) of every chunk i. If Z∗

n = (Z∗
n,i∀n, i ) is the n-th

layer solution that is found by running the backward algorithm
for the nth layer for the nth layer sizes, and Z ′

n = (Z ′
n,i∀n, i )

is a feasible solution that is found by running any other
algorithm, then the following holds for any β ≥ 1.

C∑

i=1

βiZ ′
n,i ≤

C∑

i=1

βiZ∗
n,i (10)

Proof: Proof is provided in the Appendix G in the
Supplementary Material. �

We note that Lemma 1 is a corollary of Lemma 2, which
can be obtained when β = 1.

Using Lemma. 1, Proposition. 1, and Lemma. 2, we are
ready to show the optimality of Layered Bin Packing Adaptive
Algorithm in solving problem (2-9), and this is stated in the
following theorem.

Theorem 1: Up to a given enhancement layer M, M ≥
0, if Z∗

m,i is the size of every layer m ≤ M of chunk
i that is found by running Layered Bin Packing Adaptive
Algorithm, and Z ′

m,i is the size that is found by running
any other feasible algorithm, then the following holds for

any 0 < γ < 1, satisfies (1), and β ≤ 1.

M∑

m=0

γm
C∑

i=1

βiZ ′
m,i ≤

M∑

m=0

γm
C∑

i=1

βiZ∗
m,i. (11)

In other words, Layred Bin Packing Adaptive Algo-
rithm achieves the optimal solution of the optimization prob-
lem (2-9) when 0 < γ < 1, satisfy (1), and β ≥ 1.

Proof: Proof is provided in the Appendix H in the
Supplementary Material. �

Algorithm 4 Online Layered Bin Packing Adaptive Algorithm

1: Input: Yn, deadline(i), s, Bm, C, B(j), W : the prediction
window size, α: the decision reconsideration period.

2: Output: X(i)∀i: The maximum size in which chunk i can
be fetched, In: set contains the indices of the chunks that
can be fetched up to layer n quality.

3: Initialization:
4: same as Algorithm 1, offline version plus the following:
5: sc = 1, the index of the chunk to start with.
6: ec = 1, the index of the last chunk to consider.
7: st = 1, the current time slot.
8: Every α seconds do:
9: collect user position and speed.

10: predict the bandwidth for W seconds ahead.
11: ec =The index of the first chunk has its deadline ≥

st + W
12: For each layer, n = 0, · · · , N
13: [X, In] = backwardAlgo(B, X, Xn, sc, ec, L,

deadline, Bm, bf, t, c, a, e)
14: [t, a, e] = forwardAlgo(B, X, sc, ec, deadline, Bm,

bf, In)
15: sc =last fetched chunk+1
16: st =current time slot

E. Online Algorithm: Dealing With Short and
Inaccurate BW Prediction

We face two issues in reality. First, the bandwidth infor-
mation for the distant future may not always be available.
Second, even for the near future, the estimated bandwidth may
have errors. To address both of these challenges, we design
an online algorithm (Algorithm 4). The algorithm works as
follows. Every α seconds, we predict the bandwidth for
W seconds ahead (lines 9-10). Typically α is much smaller
than W (α � W ). We find the last chunk to consider in
this run of the algorithm (line 11). The online algorithm
thus computes the scheduling decision only for the chunks
corresponding to the next W seconds ahead. We re-compute
the quality decisions periodically (every α seconds) in order
to adjust to any changes in the prediction. We can also run
the computation after the download of every chunk (or layer)
due to the low complexity of our algorithm.

Moreover, to handle inaccurate bandwidth estimation,
we set lower buffer threshold (Bmin), so if the buffer is
running lower than this threshold, we reduce the layer decision
by 1 (except if a chunk is already at base layer quality)
(lines 15-16). In the real chunk download, if we are within
a certain threshold from the deadline of the current chunk and
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it is not yet fully downloaded, we stop fetching the remaining
of the chunk as far as the base layer is fetched and we play
it at the quality fetched so far.

F. No-Skip Based Streaming Algorithm

In No-Skip streaming (i.e., watching a pre-recorded video),
when the deadline of a chunk cannot be met, rather than
skipping it, the player will stall the video and continue
downloading the chunk. The objective here is to maximize
the weighted sum of the layer sizes while minimizing the
stall duration (the rebuffering time). The objective function
is slightly different from equation. (2) since we do not allow
to skip the base layers. However, we still allow for skipping
the higher layers. For the constraints, all constraints are the
same as skip based optimization problem except that we
introduce constraint (13) to enforce the Z0(i) for every chunk
i to be equal to the BL size (Y0). We define the total
stall (re-buffering) duration from the start till the play-time
of chunk i as d(i). Therefore, the deadline of any chunk i
is (i− 1)L + s + d(i). The No-Skip formulation can thus be
written as:

Maximize:
N∑

n=1

γn
C∑

i=1

βiZn,i − λd(C) (12)

subject to,
(i−1)L+s+d(i)∑

j=1

z0(i, j) = Y0 ∀i (13)

(i−1)L+s+d(i)∑

j=1

zn(i, j) = Zn,i, ∀i, n > 0 (14)

Zn,i ≤ Yn

Yn−1
Zn−1,i, ∀i, n > 0 (15)

N∑

n=0

C∑

i=1

zn(i, j) ≤ B(j) ∀j (16)

N∑

n=0

∑

i,(i−1)L+s+d(i)>t

I

(
t∑

j=1

(

zn(i, j)
)

> 0

)

L ≤ Bm ∀t (17)

zn(i, j) ≥ 0 ∀i (18)

zn(i, j) = 0 ∀i, j > (i− 1)L + s + d(i) (19)

d(i + 1) ≥ d(i) ≥ 0 ∀i = 1, · · · , C − 1 (20)

Zn,i ∈ Zn ∀i, n (21)

Variables: zn(i, j), Zn,i, d(i) ∀i = 1, · · · , C,

1 ≤ j ≤ (C − 1)L + s + d(C), n = 0, · · · , N
This formulation converts multi-objective optimization

problem with the stall duration and weighted quality as the two
parameters into a single objective using a tradeoff parameter
λ. λ is chosen such that avoidance of one stall is preferred
as compared to fetching all the layers of all chunks since
users tend to care more about not running into rebuffering
over better quality. Specifically, λ satisfies the following
equation.

λ >

N∑

n=0

γnYn

C∑

i=1

βi (22)

With this assumption, we can solve the optimization prob-
lem optimally with a slight modification to the algorithm
proposed for the skip based streaming version. The proposed
algorithm for the No-Skip version is referred to by “No-
Skip Layered Bin Packing Adaptive Algorithm” (No-Skip LBP,
Algorithm 5 in Appendix I in the Supplementary Material).
There are a few key differences in this algorithm as compared
to the skip version, and we explained them below.

One difference as compared to the skip version is that
the first step is to determine the minimum stall time since
that is the first priority. In order to do this, we simulate
fetching chunks in order at BL quality (Base layer forward
algorithm, Algorithm 6 in Appendix I in the Supple-
mentary Material). We first let d(1) = · · · =
d(C) = 0. We start to fetch chunks in order. If chunk i can
be fetched within its deadline ((i− 1)L+ s + d(i)), we move
to the next chunk (line 20-21). If chunk i cannot be fetched
by its deadline, we continue fetching it till it is completely
fetched, and the additional time spent in fetching this chunk
is added to d(k) for every k ≥ i since there has to be an
additional stall in order to fetch these chunks (line 22-24).
Using this, we obtain the total stall and the deadline of the
last chunk (d(C), and deadline(C)) The stall duration of
the last chunk (chunk C) gives the total stall duration for the
algorithm.

The other difference is in running the backward algo-
rithm for the base layer decisions (see base layer backward
algorithm, Algorithm 7 in Appendix I in the Supplementary
Material). The key difference in running the backward algo-
rithm for the base layer with compare to the skip version is
that there must be no BL skips. With the backward algorithm,
we will work on moving stalls as early as possible. We run
the base layer backward algorithm starting at time slot j =
deadline(C) = (C−1)L+s+d(C). The scenario of deadline
violation cannot happen due to the procedure of forward step
before this. Thus, the possibility of buffer constraint violation
must be managed. If we reach a chunk in which there is a
buffer constraint violation, we decrement its deadline by 1 and
check if the violations can be removed. This decrement can
be continued until the buffer constraint violation is avoided
(lines 11, 28-29). This provides the deadlines of the different
chunks such that stall duration is at its minimum and stalls are
brought to the earliest possible time, so we get minimum num-
ber of stalls and optimal stall pattern. When stalls are brought
to their earliest possible, all chunks can have more time to get
their higher layers without violating any of the constraints.
Therefore, we have higher chance of getting higher layers of
later chunks. Forward algorithm (Algorithm 3) is run after
that to simulate fetching chunks in order and provide lower
deadlines of chunks for the E1 backward run. For enhancement
layer decisions, the backward-forward scan is run as in the
skip version case since skips are allowed for the enhancement
layers. The main algorithm that calls the forward and backward
scans in the sequence we described is “No-Skip Layered Bin
Packing Adaptive Algorithm” (Algorithm 5). An illustrative
example of the algorithm is described in Appendix J in the
Supplementary Material.

Lemma 3: If d∗(C) is the total stall duration that is found
by No-Skip base layer forward algorithm and d′(C) is the
total stall duration that is found by running any other feasible
algorithm, then the following holds true:

d′(C) ≥ d∗(C)
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TABLE I

SVC ENCODING BITRATES USED IN OUR EVALUATION

In other words, the No-Skip base layer forward algorithm
achieves the minimum stall duration.

Proof: Proof is provided in Appendix K in the Supple-
mentary Material. �

From Lemma 3, we note that No-Skip forward algorithm
would finish playing all chunks at their earliest time. Since all
the chunks are obtained at the base layer quality and there is a
minimum number of stalls, we note that the objective function
is optimized for any β ≥ 1 when only base layer is considered.
When running base layer backward algorithm, the deadlines
of the chunks are shifted to the last possibilities which gives
the maximum flexibility of obtaining higher layers of chunks
before their deadlines.

Having shown the result for the base layer and having
determined the deadline for the last chunk, the rest of the
algorithm is similar to the skip version where only the
weighted quality need to be considered (the stall time is
already found). Thus, the optimality result as described in the
following Theorem holds, where the proof follows the same
lines as described for the skip version theorem.

Theorem 2: If z∗m,i is the feasible size of every layer
m ≤M of chunk i that is found by running No-Skip Layered
Bin Packing Adaptive Algorithm, and z′m,i is a feasible size
that is found by any other feasible algorithm for the same stall
duration, then the following holds for 0 < γ < 1, (1), β ≥ 1,
and (22):

M∑

m=0

γm
C∑

i=1

βiZ ′
m,i ≤

M∑

m=0

γm
C∑

i=1

βiZ∗
m,i

In other words, No-Skip Layered Bin Packing Adaptive Algo-
rithm achieves the optimal solution of the optimization prob-
lem (12)-(21).

Proof: Proof is provided in Appendix L in the Supple-
mentary Material. �

The No-Skip scheme faces the same challenges described
in §IV-E: short bandwidth prediction in the distant future and
inaccurate bandwidth prediction, and they are handled the
same way described in section §IV-E.

V. EVALUATION

In this section, we evaluate our algorithms (LBP) using both
simulation and emulation. Simulation allows us to explore a
wide spectrum of the parameter space. We then implemented
a TCP/IP-based emulation testbed to compare its performance
with simulation and to measure the runtime overhead in §V-D.

A. Simulation Parameters

Simulation Setup: To make our simulation realistic,
we choose the SVC encoding rates of an SVC encoded video
“Big Buck Bunny”, which is published in [22]. It consists
of 299 chunks (14315 frames), and the chunk duration is
2 seconds (48 frames and the frame rate of this video is 24fps).
The video is SVC encoded into one base layer and three
enhancement layers. Table I shows the cumulative nominal

Fig. 4. Statistics of the bandwidth traces: (a) mean and standard deviation
of each trace’s throughput, and (b) trace length, across the 50 traces.

rates of each of the layers. The exact rate of every chunk might
be different since the video is VBR encoded. In the table, “BL”
and “ELi” refer to the base layer and the cumulative (up to) ith
enhancement layer size, respectively. For example, the exact
size of the ith enhancement layer is equal to ELi-EL(i−1).

For all schemes (both the baseline approaches and our
algorithms), we assume a playback buffer of 10 seconds
(Bm = 10s) for the skip version and 2 minutes for
the No-Skip version, and a startup delay of 5 seconds.
We will systematically study the impact of different algo-
rithm parameters, including prediction accuracy, prediction
window size, and playback buffer size in Appendix M in
the Supplementary Material. Finally, for all the variants of
our algorithms with short prediction (W ≤ 20s), we choose
the lower buffer threshold to be half of the maximum buffer
occupancy (Bmin = Bm/2). When the buffer is less than
Bmin, we drop the highest layer that was decided to be
fetched (unless the decision is fetching only the base layer).
We still run the optimization problem, collect the layer size
decisions, but we decrement the number of layers by 1 if
enhancement layers are decided to be fetched. This helps
being optimistic when the buffer is running low since the
algorithm with short prediction have limited knowledge of
the bandwidth ahead. All reported results are based on the
50 diverse bandwidth traces described next.

Bandwidth Traces: For bandwidth traces, we used the
dataset in [31], which consists of continuous 1-second mea-
surement of video streaming throughput of a moving device
in Telenor’s 3G/HSDPA mobile network in Norway. The
dataset contains 86 bandwidth profiles (traces) for different
transportation types including bus, car, train, metro, tram,
and ferry. We exclude traces with either very high or low
bandwidth since in both cases the streaming strategies are
trivial (fetching all layers and only base layers, respectively).
We then ended up having 50 traces whose key statistics are
plotted in Fig. 4. Overall the traces are highly diverse, with
lengths varying from 3 to 30 minutes. We note that since the
“Big Buck Bunny” is 598s. The video is re-started for long
traces and cut at the end of the trace for short traces.

The average throughput across the traces varies from
0.7Mbps to 2.7 Mbps, with the median being 1.6 Mbps.
In each trace, the instantaneous throughput is also highly
variable, with the average standard deviation across traces
being 0.9 Mbps.
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Bandwidth Prediction: We consider two different techniques
for bandwidth prediction. First is a harmonic mean based
prediction in which the harmonic mean of the bandwidth of
the last 5 seconds is used as a predictor of the bandwidth
for the next 20 seconds. We refer to our algorithm with
harmonic mean based prediction by HM. Second, we assume
crowd sourced prediction, and a combination of prediction
window size with prediction error percentages. Longer pre-
diction window comes with the cost of higher prediction
error. For example we use (10, 25%) to refer to the prediction
window (W ) of 10 seconds and the prediction error pe of 25%.
In our simulation, the predicted bandwidth is computed by
multiplying the actual value in the bandwidth trace (the ground
truth) by 1 + e where e is uniformly drawn from [−pe, pe]
(based on our findings in Appendix B in the Supplementary
Material, the prediction error tends to have a mean of 0 in the
long run). For skip version (real time streaming), we evaluated
our algorithm in case of (10, 25%) and (20, 50%) since
chunks beyond 20 seconds ahead might not be available yet.
However, for the No-Skip version (non-real time streaming),
we considered (20, 50%) and (100, 60%). We also include the
offline scheme i.e., (∞, 0), for comparison. It corresponds to
the performance upper bound for an online algorithm, which
is given by our offline algorithm.

B. Skip Based Streaming
We compare our skip-based streaming algorithm (§IV-C)

with three baseline algorithms with different aggressiveness
levels. Baseline 1 is a conservative algorithm performing
“horizontal scan” by first trying to fetch the base layer of
all chunks up to the full buffer. If there is spare bandwidth
and the playout buffer is not full, the algorithm will fetch
the first enhancement layer of buffered chunks that can be
received before their playback deadline. If the bandwidth still
permits, the algorithm will fetch the second enhancement
layer in the same manner. Baseline 2 instead aggressively
performs “vertical scan”, it fetches all layers of the next chunk
before fetching the future chunks. Baseline 3 is a hybrid
approach combining Baseline 1 and 2. It first (vertically)
fetches all layers of the next chunk and if there is still available
bandwidth, it subsequently (horizontally) fetches the base layer
of all later chunks before proceeding to their higher layers.

We compare the above three baseline approaches with
three representative configurations of our proposed online LBP
algorithm. They are referred to as HM (harmonic mean based
prediction), (10, 25%), and (20, 50%). Moreover, we include
our offline algorithm which has a perfect bandwidth prediction
for the whole period of the video.

The results are shown in the three subplots of Fig. 5.
Fig. 5-a plots the breakdown of the highest fetched layers
of each chunk (“S” refers to skipped chunks). For example,
for Baseline 1, 26.5% of chunks are fetched only at the base
layer quality (shown in light blue). The average playback
rate (across all 50 traces) for each scheme is also marked in
the plot. As shown, our schemes significantly outperform the
three baseline algorithms by fetching more chunks at higher
layers with fewer skips. Even when the prediction window
is as short as 10 seconds, our scheme incurs negligible skips
compared to Baseline 2 and 3, and yields an average playback
bitrate that is ∼25% higher than Baseline 1. As the prediction
window increases (i.e., W = 20s and pe = 50%), the layer
distribution becomes very close to the offline scheme.

Fig. 5. Skip based streaming results for different schemes: (a) layer
distribution, (b) average playback rate, and (c) layer switching rate.

Fig. 5-b plots the CDF of the average playback rate of
all the schemes across all traces. As shown, even with a
prediction window of as short as 10 seconds, our online
scheme achieves playback rates that is the closest to those
achieved by the offline scheme across the 50 traces. One more
interesting observation from Fig. 5-b is that both variants of
our algorithm (HM, and (10,25%)) outperform Baseline 1 in
terms of average playback rate in every bandwidth trace. Also
note that although Baseline 2 and 3 achieve higher playback
rates than Baseline 1, they suffer from a large number of skips
as shown in Fig. 5-a.

Fig. 5-c plots for each algorithm the distribution of the layer
switching rates (LSR), which is defined as 1

C∗L

∑C
i=2 |X(i)−

X(i − 1)| where C is the number of chunks, L is the
chunk duration, and X(i) is the size of chunk i (up to its
fetched layer). Intuitively, LSR quantifies the frequency of
the playback rate change, and ideally should be minimized.
Baseline 1, behaves very conservatively by first fetching the
base layer for all chunks up to full buffer. Therefore it has
lower layer switching rates at the cost of lower playback rates.
Our algorithms instead achieve reasonably low layer switching
rates while being able to stream at the highest possible rate
with no skips.

We note that larger prediction windows can lead to better
decisions even if the prediction has higher error. As long as the
bandwidth prediction is unbiased, we see that higher prediction
errors can be tolerated. Appendix B in the Supplementary
Material shows that crowdsourcing-based prediction is an
unbiased predictor of the future bandwidth. Moreover, more
results about the effect of the prediction error on the proposed
algorithm are described in Appendix M in the Supplementary
Material. Further, we show that the computational overhead of
the proposed approach is low, as described in Appendix N in
the Supplementary Material.
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C. No-Skip Based Streaming
We now evaluate the no skip based algorithm. We com-

pare it with three state-of-the-art algorithms: buffer-based
algorithm (BBA) proposed by Netflix [10], Naive port of
Microsoft’s Smooth Streaming algorithm for SVC [9], and
a state-of-the-art slope-based SVC streaming approach [23].
To ensure apple-to-apple comparisons, we adopt the
same parameter configuration (2-minute buffer size and
1-second chunk size) and apply the algorithms to all our
50 traces. Before describing the results, we first provide an
overview of the three algorithms we compare our approach
with.

Netflix Buffer-Based Approach (BBA [10]) adjusts the
streaming quality based on the playout buffer occupancy.
Specifically, it is configured with lower and upper buffer
thresholds. If the buffer occupancy is lower (higher) than
the lower (higher) threshold, chunks are fetched at the low-
est (highest) quality; if the buffer occupancy lies in between,
the buffer-rate relationship is determined by a pre-defined step
function. We use 40 and 80 seconds as the lower and upper
thresholds. The quality levels are specified in terms of the
SVC layers (e.g., “the highest quality” means up to the highest
layer).

Naive Port of Microsoft Smooth Streaming for SVC [9]
(NMS) employs a combination of buffer and instantaneous
bandwidth estimation for rate adaptation. NMS is similar to
BBA in that it also leverages the buffer occupancy level to
determine the strategy. The difference, however, is that it also
employs the instantaneous bandwidth estimation (as opposed
to the long-term network quality prediction we use) to guide
rate adaptation. As a result, for example, it can fetch high-
layer chunks without waiting for the buffer level reaching the
threshold as is the case for BBA.

Slope-Based SVC Streaming [23] takes the advantage of
SVC over AVC. It can download the base layer of a new
chunk or increase the quality of a previously downloaded (but
not yet played) chunk by downloading its enhancement layers.
This is achieved by defining a slope function: the steeper the
slope, the more backfilling will be chosen over prefetching.
Following the original paper’s recommendations, we empir-
ically choose 2 slope levels (SB1: −7%, and SB2: −40%).
We verified that these two settings provide good results
compared to other slope configurations (e.g., going steeper
than SB1 causes longer stall duration and going flatter than
SB2 makes the playback rate lower).

The results are shown in four subplots in Fig. 6. Fig. 6-a
plots the layer breakdown. The average playback rate and the
total rebuffering time (across all 50 traces) for each scheme
are also marked. As shown, in terms of rebuffering time,
our online schemes with crowd sourced bandwidth prediction
achieve the lowest stall duration even when the prediction
window is as short as 20 seconds ahead. On other hand,
NMS performs poorly in terms of avoiding stalls since It
runs into almost an hour of stalls (53 minutes). Moreover, all
variants of our online algorithm including HM significantly
outperform other algorithms in fetching higher layers. For
example, (20,50%) fetches only 16% of the chunks at BL
quality which is 57%, 70%, 62%, and 58% fewer then BBA0,
SB1, SB2, and NMS respectively. Also, as the prediction
window increases, the layer distribution becomes closer to
the offline scheme, with the shortest stall duration incurred.
Fig. 6-b and Fig. 6-c plot for each algorithm the distribution
of the (per trace) average playback rate and the stall duration

Fig. 6. No-Skip based streaming results for different schemes: (a) layer
distribution, (b) average playback rate, (c) total rebuffering time, and (d) layer
switching rate.

across all traces. The results are consistent with our findings
from Fig. 6-a: our scheme achieves high playback rate that is
the closest to the very optimistic algorithms (e.g., NMS) while
incurring stalls that are as infrequent as the very conservative
algorithms (e.g., SB3 and BBA). Thus, it is clearly shown
that our algorithm is maintaining a good trade-off between
minimizing the stall duration and maximizing the average
playback rate. Fig. 6-d plots for each algorithm the distribution
of the layer switching rates (LSR, defined in §V-B). Similar to
the skip based scenario, our schemes achieve much lower LSR
compared to the aggressive approach (e.g., NMS). The LSR
can further be reduced but at the cost of reduced playback rate.

To conclude this section, we would like to point out the
key points behind achieving better performance for our algo-
rithm as compared to the baselines. First, incorporating chunk
deadlines, bandwidth prediction, and buffer constraint into the
optimization problem yields a better decision per chunk. More-
over, favoring the later chunks helps the algorithm avoid being
overly optimistic now at the cost of running into skips later
on. Finally, re-considering the decisions after the download
of every chunk with the new updated bandwidth prediction
helps make the algorithm self-adaptive and more dynamically
adjustable to the network changes. The low complexity of the
algorithm allows for re-running the algorithm and changing
decisions on the fly.

D. Emulation Over TCP/IP Network

To complement our simulation results, we have built an
emulation testbed using C++ (about 1000 LoC) on Linux. The
testbed consists of a client and a server. All streaming logics
described in §IV are implemented on the client side, which
fetches synthetic chunks from the server over a persistent TCP
connection. We deploy our emulation testbed between a com-
modity laptop and a server inter-connected using high-speed
Ethernet (1Gbps link and 1ms RTT). We use Dummynet [32]
on the client side to replay a bandwidth profile by dynamically
changing the available bandwidth every one second. We also
use the Linux tc tool to inject additional latency between the
client and server.
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TABLE II

LTE BANDWIDTH TRACES

Fig. 7. Emulation vs simulation: (a) playback bitrate over time, (b) chunk
quality distribution.

We next run the emulation experiment using six bandwidth
traces, each of length 15-minutes. These traces were collected
on an LTE network on different drive routes (as described
in Appendix B in the Supplementary Material). Table II
shows the statistics of the bandwidth traces, and since the
bandwidth of the traces are high, we used the following
cumulative SVC rates, 1.5Mbps (BL), 2.75Mbps (EL1),
4.8Mbps (EL2), 7.8Mbps (EL3) [22]. We configure the
end-to-end RTT to be 60ms, which roughly corresponds to the
last-mile latency in today’s LTE networks. Meanwhile, we run
the same bandwidth traces under identical settings using the
simulation approach. Since all traces confirm similar behavior,
we explain the results of one bandwidth trace, so we can have
both the quality CDF and the playback quality over time.

Fig. 7-a compares the simulation and emulation results in
terms of the qualities of fetched chunks, and Fig. 7-b com-
pares the chunk quality distribution. As shown, the simulation
and emulation results well cross-validate each other. Their
slight difference in Fig. 7-a is mainly caused by the TCP
behavior (e.g., slow start after idle) that may underutilize the
available bandwidth.

VI. CONCLUSIONS AND FUTURE WORK

We formulated the SVC rate adaptation problem as a non-
convex optimization problem that has an objective of mini-
mizing the skip/stall duration as the first priority, maximize
the average playback as the second priority, and minimize the
quality switching rate as the last priority. We develop LBP
(Layered Bin Packing Adaptive Algorithm), a low complexity
algorithm that is shown to solve the problem optimally in
polynomial time. Therefore, offline LBP algorithm that uses
perfect prediction of the bandwidth for the whole period
of the video provides a theoretic upper bound. Moreover,
an online LBP that is based on sliding window and solves
the optimization problem for few chunks ahead was proposed
for the more practical scenarios in which the bandwidth is
predicted for short time ahead and has prediction errors. The
results indicate that LBP is robust to prediction errors, and
works well with short prediction windows. It outperforms

existing streaming approaches by improving key QoE metrics.
Finally, LBP incurs low runtime overhead due to its linear
complexity.

Extending the results to consider streaming over multi-
ple paths with link preferences is an interesting problem,
and is being considered by Elgabli et al. [33], [34] and
Elgabli and Aggarwal [35].
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